
VIREOS: An Integrated, Bottom-Up, Educational
Operating Systems Project with FPGA Support

Marc L. Corliss
Hobart and William Smith Colleges

Dept. of Mathematics and Computer Science
Geneva, NY

corliss@hws.edu

Marcela Melara
Hobart and William Smith Colleges

Dept. of Mathematics and Computer Science
Geneva, NY

marcela.melara@hws.edu

ABSTRACT
In this paper, we present the VIREOS project, a new operat-
ing system designed specifically for the classroom. VIREOS
is a simple, Unix-like, operating system, which runs on the
Larc educational architecture. A VIREOS/Larc system can
either be simulated or run on a pre-configured FPGA. The
VIREOS project is well integrated with an introductory
computer architecture course using Larc and the assign-
ments are structured in a similar fashion: using a bottom-
up approach. We have several resources available on the
Web, which help reduce the overhead of adopting VIREOS.
Finally, VIREOS has been used in one operating systems
course already, and the feedback from students was gener-
ally favorable.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design;
K.3.2 [Computer and Information Science Educa-
tion]: Computer Science Education

General Terms
Design

Keywords
VIREOS, operating systems, education

1. INTRODUCTION
The operating system (OS) is a core component in mod-

ern computers and naturally an important area of study for
undergraduate computer science students. Obviously, op-
erating systems are ubiquitous in modern computers, and
thus, students should know something about them. More-
over, perhaps more than any other course in computer sci-
ence, an operating systems course ties together all aspects of
computer system design. After all, it is the responsibility of
the OS to manage application software running on the com-
puter as well as to provide that software with an abstract
view of the hardware.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03 ...$10.00.

Naturally, the best way for a student to learn how the
operating system works is to build one. Of course, a student
cannot be expected to build a commercial-caliber OS such
as Linux from scratch. The student must be either given
a substantial amount of starting code or the OS must be
simple enough that it can be completed in a single semester.
In this paper, we explore the latter approach; we introduce
and describe a new operating system designed specifically
for the classroom.

The operating system, which we call VIREOS (a Vanilla,
Introductory, but Realistic, Educational Operating System),
is a simple, Unix-like OS written entirely in C. VIREOS is
implemented on top of the Larc classroom architecture [5],
which has a much simpler instruction set architecture (ISA),
input/output (I/O) interface, and memory management
hardware support (among other things) than most com-
mercial architectures. VIREOS was used in an operating
systems course in fall 2009 at Hobart and William Smith
Colleges, and overall, it was well received by the students.

VIREOS has several virtues that make it well suited
for the classroom. First, although it was designed for
simplicity, VIREOS includes many important features of
modern operating systems such as a Unix-like file sys-
tem (using i-nodes) and virtual memory via paging. Sec-
ond, though a VIREOS/Larc system is often simulated,
we also provide support for running it on a pre-configured
FPGA. Third, VIREOS can be integrated with a course
on computer architecture (especially one using Larc). The
VIREOS assignments are structured in a bottom-up fashion
so that students are always implementing new components
on top of components they have already built and under-
stand. Finally, we have several resources including compre-
hensive documentation and code available on the Web at
http://math.hws.edu/vireos.

In the remainder of this paper, we describe the VIREOS
project in more detail. In Section 2, we discuss related
work. In Section 3, we enumerate our goals in designing
the VIREOS project. In Section 4, we give an overview of
the VIREOS project. In Section 5, we share our experi-
ences using the VIREOS project in the classroom. Finally,
in Section 6, we present future work.

2. RELATED WORK
There are many existing educational operating system

projects (too many to cite them all), but there are three
main approaches. One approach is to have students modify
an existing, commercial operating system rather than write
one from scratch [6, 9, 13]. Obviously, the advantage of

39

this approach is that the student works with a commercial
OS. They can also potentially look more deeply into issues
of performance and security. But the disadvantage is that
the student misses out on implementing some aspects of the
OS. As a result, the student may leave the class with an
incomplete view of some parts of the OS.

A second approach is to have students build a complete
OS for a commercial machine [2, 3, 8, 11, 12, 18]. The OS,
itself, may also have commercial uses, which is the case for
Minix [18]. For Minix though, we believe some students may
find the software infrastructure daunting. Even with a sim-
pler infrastructure, using a commercial machine, while cer-
tainly appealing, has some drawbacks. In particular, many
aspects of a commercial machine, such as interrupt han-
dling, I/O, and memory management, are complicated and
can make the job of the student more challenging. Some of
this complexity can be traded off for features in the operat-
ing system such as paging and more complex file systems.
But, in this case, as with modifying an existing OS, the stu-
dent may have gaps in their understanding of some parts of
the OS.

A third approach, which is taken in the VIREOS
project, is to build an operating system for a simpler, non-
commercial machine; one that is designed specifically for the
classroom. Nachos [4] and OS 161 [7] are two prominent ex-
amples that fall into this category. With this approach some
complexity is naturally avoided (with regards to the under-
lying machine) at the expense of some loss of realism. We
address this deficiency in the VIREOS project to some ex-
tent by configuring an FPGA to run as a VIREOS system.
Although it is probably not practical for use in assignments,
it can be used to demonstrate to the student that their op-
erating system will be a part of a complete, working system.
In fact, this use of hardware in the VIREOS project is sim-
ilar in many educational OS projects, even those running
on commercial hardware. During OS implementation and
testing, emulation or simulation is often used.

One aspect of VIREOS that is different from many educa-
tional operating systems projects is the potential for integra-
tion with other computer science courses. In particular, the
machine that VIREOS runs on top of, Larc [5], was designed
specifically for an introductory computer architecture class
(sometimes called computer organization). The approach in
both projects works similarly: each new assignment builds
on top of previous work done by the student. Therefore,
operating systems instructors can leverage student’s knowl-
edge and experience gained in the architecture course. In the
future, we plan on exploring connections with other courses
such as an advanced computer architecture course.

Embedded XINU [3] is a recent project similar to VIREOS
in terms of its integration with other computer science
courses. But Embedded XINU differs from VIREOS in that
it targets embedded systems and runs on top of a Linksys
wireless router. On the one hand, Embedded XINU has the
virtue that the operating system runs on real hardware. But
at the same time, this hardware must be installed and main-
tained by the instructor, which adds some overhead to its
adoption. With VIREOS, the use of hardware (i.e., FPGAs)
is optional.

3. GOALS
We had several goals in mind when designing the VIREOS

project. Here we list each goal along with a description of
how it was met.

• From scratch. First, we want students to write the
operating system basically from scratch (with just a lit-
tle auxiliary starting code). Of course, the OS and/or
machine must be simple for the student to complete
the OS in a single semester. To achieve this goal, we
use an education-based architecture (Larc [5]). We
also primarily do not use any interrupts (except in a
single case). We have found that these two simplifica-
tions are enough to ensure that the OS is doable in a
single semester without sacrificing some other impor-
tant and interesting aspects of the OS (e.g., file system
functionality and memory management).

• Good coverage. Although the machine and OS
are simplified in some ways, we still want the OS to
contain as many features as possible. For instance,
VIREOS has a Unix-like file system (using i-nodes),
multi-processing, and virtual memory. We have found
from experience in teaching operating systems that
some students have trouble fully understanding these
aspects of the OS unless they have actually imple-
mented them.

• Realistic. Even though we use an educational archi-
tecture, we still want students to feel that they are
building a “realistic” operating system. We have con-
figured an FPGA to run the VIREOS system so that
instructors can demonstrate VIREOS running on real
hardware. In addition, we modeled parts of VIREOS
after *nix operating systems, which students at our in-
stitution use when doing their computer science work.
In particular, each VIREOS system call is similar to a
corresponding call in Unix/Linux and the file system
is implemented using i-nodes.

• Well integrated. One very important goal for us
was integrating the operating systems course with our
introductory course in computer architecture. For the
student, the study of operating systems is a natural
extension from their study of computer architecture.
Consequently, we implemented VIREOS to run on the
Larc classroom architecture [5], which we use in our
architecture course. It should be pointed out, however,
that VIREOS can be used at institutions where Larc
is not adopted in the architecture course.

• Bottom-up. Another important goal for us was to
use a bottom-up approach in structuring the assign-
ments. Each assignment should build off of the pre-
vious assignment; the student should never work with
code that they do not yet understand. In the first
VIREOS project assignment (minus a preliminary as-
signment where the student builds a shell), the student
builds a basic trap and I/O handler, and then in later
assignments adds additional functionality (a file sys-
tem, process manager, and memory manager).

• Well documented and supported. Finally, we
want to provide thorough documentation and support

40

to lower overhead for instructors to adopt the project
and for students to use it. We have written a lab man-
ual, which includes in-depth descriptions of both the
OS and the hardware, as well as a detailed write-up
for each assignment. The manual is freely available off
the Web at http://math.hws.edu/vireos along with the
API for all the assignments. The solution code can also
be requested by instructors (and instructors only – see
the VIREOS web page for details). The instructor can
also obtain Verilog files for configuring an FPGA (the
Altera DE1 [1]) to run the VIREOS/Larc system.

4. VIREOS PROJECT
This section describes the VIREOS project in more detail.

Section 4.1 describes the VIREOS system and Section 4.2
describes the assignments and the available resources for
both students and instructors.

4.1 VIREOS System
General. VIREOS is a *nix-like (Unix/Linux) operating
system (although greatly simplified). VIREOS has support
for a file system, time sharing, and virtual memory via pag-
ing. The file system support includes both files and directo-
ries although it does not include links. Unlike a *nix system,
however, VIREOS does not have support for multiple users.
It also mostly does not provide security (e.g., the user can
read/write any file) although it does include some safety
measures to prevent an errant program from corrupting the
system.

The VIREOS system calls enable user programs to work
with files and directories, as well as manage processes. Each
of these system calls is similar to a corresponding *nix sys-
tem call. VIREOS also has support for communicating di-
rectly with I/O devices such as the disk. Although this is
not ideal from a safety/security standpoint (e.g., an errant
application could corrupt the disk), it makes it much easier
for students to test their operating system implementation.
(Note: these system calls could be disabled in a working
version of VIREOS.)

Source language. VIREOS is written entirely in a C-
like language called C--, which was first developed by Jim
Lenz [10], although it has been significantly extended for the
VIREOS project. In the future we plan on implementing
VIREOS in full ANSI C, but in order to get the project up-
and-running faster, we opted to initially use a simple, easily
extendable compiler. Moreover, the C-- compiler adds some
OS-specific features such as providing an array for saving
and restoring registers at the source language level. Because
of these features, the OS can be written entirely in C-- (no
extra assembly code is required).

C-- is missing some features from C including multi-
dimensional arrays, unions, nested functions/structs, type-
defs, switch statements, do/while loops, function pointers,
and primitives besides int and char (among other things).
But C-- retains most of the features of C and in practice the
programming experience is much the same.

Target machine. VIREOS runs on the Larc architec-
ture [5]. Larc is a simple, 16-bit, MIPS-like architecture
designed specifically for the classroom. It can support most
text-based (non-graphical) systems such as those that use a
command-line interface (i.e., a shell) for entering commands

and running programs. A Larc machine is primarily simu-
lated although we have configured a Larc processor on an
FPGA (discussed below).

Larc has ISA support for four I/O devices: a keyboard, a
text-based monitor, a disk (the block size is 1/2 KB), and a
real-time clock. To simplify the OS, polling is used to com-
municate with I/O devices. The only supported interrupt
is a timer for implementing time sharing. In the future, we
will explore adding support for interrupt-driven I/O.

Each I/O device includes a set of registers for communi-
cation between the CPU and that device. These are pro-
grammed via memory-mapped I/O. There are also a set of
memory-mapped registers for managing the CPU.

Larc has support for two memory management techniques:
virtual memory via paging as well as a simple sandboxing
technique (using a base and limit register) [17].

Run environment. The VIREOS/Larc system can be run
in one of two ways. First, it can be run in a Larc simu-
lator, which is written in C and compiled to run on most
Linux machines. It can also be run on a pre-configured Al-
tera DE1 FPGA [1] (other FPGAs could potentially be used
by modifying our provided configuration files). When stu-
dents are implementing VIREOS, it probably makes more
sense for them to use the simulator as there is no hardware
overhead. But the FPGA can be used to demonstrate a
“real” VIREOS/Larc system. There is also the potential for
integrating this project with a course on microarchitecture.

Note: we are currently in the process of adding paging
support to the FPGA but we expect to have this completed
by the time of publication. All other OS features are sup-
ported, and as a result, the FPGA can still be used for
demonstration purposes as well as for the non-paging course
assignments.

Code organization. VIREOS consists of five components:
a trap handler, an I/O handler, a file system manager, a
process manager, and a memory manager. Each component
is contained in a separate C module. Students implement
each of these components over the course of the semester.

In addition to these components, there are also a couple of
modules for performing auxiliary functionality such as ma-
nipulating strings or converting between data types. These
modules are provided to students.

4.2 Assignments and Resources
Assignments. Table 1 lists each of the assignments stu-
dents undertake in the VIREOS project. There are 5 total
assignments. the first 2 are shorter two-week assignments
and the last 3 are longer three-week assignments. Students
start by implementing an interactive shell (a two-week as-
signment) with support for redirection, piping, and back-
ground processing. The shell serves as the core application
in a VIREOS system and it is important that students un-
derstand how an application like the shell works. This as-
signment also gives students a better understanding of the
OS functionality, particularly with regards to process man-
agement, which they may not have fully understood prior to
completing the assignment.

In the remainder of the assignments students implement
the various components of the VIREOS kernel. As much as
possible, these assignments are ordered in a bottom-up fash-
ion; students build each component on top of components
built in previous assignments.

41

Assignment Component Length Details
0 Interactive Shell 2 weeks Supports redirection, background processing, and piping
1 Trap and I/O handler 2 weeks Uses polling
2 File system manager 3 weeks Uses i-nodes, supports files (for base credit) and directories (for extra credit)
3 Process manager 3 weeks Uses round-robin scheduling, supports fork, exec, wait
4 Memory manager 3 weeks Uses paging

Table 1: VIREOS project assignments.

At the start of each assignment, the student is given a pre-
compiled, working version of the components implemented
in earlier assignments. In some cases, these must be slightly
augmented to work with the new component. However,
these augmentations are generally small.

At the end of each assignment, the student has a working
kernel although it may not include some functionality, which
will be implemented in a later assignment. The student is
given a set of test programs, which they can use to test
their implementation of the new component(s). The student
is also given a compiled, reference operating system to see
how the test programs should behave with a working OS.

In the first kernel assignment, a two-week assignment, stu-
dents build a trap and I/O handler. This kernel will support
applications that directly communicate with I/O devices,
several of which the student is provided with. Of course,
this kernel will not support applications that make use of
the file system or create processes.

In the second kernel assignment, a three-week assignment,
students build a file system on top of their trap and I/O
handler. For base credit, the student must support all the
file-related (and not directory-related) system calls. The
directory-related system calls are saved for extra credit. The
student is given several test programs that manipulate files
(and potentially directories) as well as stress test the file sys-
tem. Of course, none of these test programs include multi-
processing.

In the third kernel assignment, a three-week assignment,
students build a process manager with a simple round-robin
scheduler. With the process manager, VIREOS has support
for the fork, exec, and wait system calls (among others)
and time sharing. However, the kernel is highly inefficient.
Because paging is unimplemented and so each process can
use the entire user space, the kernel saves and restores the
entire address space on a context switch. In this assignment,
the student is given a working shell along with several shell
utilities (e.g., ls, mkdir). The student is also given a program
for stress testing the process manager.

In the final kernel assignment, a three-week assignment,
students implement paging. Although this adds no addi-
tional functionality to the OS, it significantly improves its
efficiency. Because the address space is small and the clock
speed is slow, the entire page table can be stored in a trans-
lation lookaside buffer (TLB), which greatly simplifies the
operating system. To test their implementation of paging,
the student can use the same test programs from the pro-
cess manager assignment along with one new test program
for stress testing the memory manager.

Student/instructor resources. We have several, freely-
available resources for both students and instructors using
VIREOS. These can be attained off of the VIREOS web page
at http://math.hws.edu/vireos. First, we have a comprehen-
sive student manual (a PDF file), documenting all aspects

of the VIREOS project. It includes informational sections
on the Larc ISA, VIREOS code layout, and C-- language,
as well as detailed write-ups for each assignment. Although
this manual does not cover operating systems theory, it is in-
tended to be used alongside a traditional operating systems
textbook [14, 15, 17].

We also have the API for each assignment available on
the web page. It is generated from comments in the source
code using the tool doxygen [19], which works similarly to
javadoc [16].

We also provide instructors and students with the incom-
plete toolset, which the student must complete over the
course of the semester. Instructors (and instructors only)
can get the solution code for the assignments. Instructors
can also get the Larc simulator source code as well as the
Verilog code used to configure the FPGA. Details are avail-
able on the web page for requesting this restricted code, al-
though instructors should expect some delay as each request
must be validated.

5. EXPERIENCES
The VIREOS project was used in the fall 2009 offering

of Operating Systems at Hobart and William Smith Col-
leges (HWS). We had not yet configured an FPGA to run
VIREOS, but all other aspects of the project were fully im-
plemented and tested in the class.

The class was taught by the first author of this paper.
The class consisted of a lecture (3 hours per week) and a lab
(1 and 1/2 hours per week). The lab period gave students a
chance to get help from the instructor on the programming
assignments. The course was taught using the textbook by
Tanenbaum [17], which was supplemented with the VIREOS
documentation.

The size of the class was small with only 8 students in
total. Interestingly, 3 of the 8 students were exchange stu-
dents from a European university. The 5 HWS students had
used Larc before while the 3 exchange students had not.

None of the students had any significant experience pro-
gramming in C (which VIREOS is written in) although the
3 exchange students had some experience programming in
C++ (the HWS students did not). As a result, the stu-
dents were given a week-long primer on C in the beginning
of the course along with a short, 1-week programming as-
signment designed to familiarize them with C. Students were
also given a second 1-week assignment at the beginning of
the course on using the interactive shell and its advanced
features (e.g., piping) prior to building their own. Note:
these preliminary assigments would be lifted for students
with more C and/or shell experience.

Overall, the VIREOS project was well received by the stu-
dents in the class. At the end of each assignment, the stu-
dents were asked whether they found the assignment chal-
lenging and interesting, whether they had a better under-

42

standing of how operating systems work, and whether the
time allotted was reasonable (as well as a call for any other
comments). All of the students in the class generally found
each assignment challenging and interesting. The students
also found that each assignment gave them a better under-
standing of how operating systems work. For example, one
student commented on the file system assignment:

This [assignment] was definitely challenging, but
it really helped me get a grasp on the file sys-
tem concepts we talked about in class. I found
the translation from file system theory to imple-
mentation pretty interesting–it took a lot of work
to make sure the underlying theory was working
correctly.

A second student commented on the process manager as-
signment:

I learned a lot about implementing a process
manager and all the complications that make it
challenging. Working on this project really did
help me to understand how operating systems
manage multiple processes.

There were other similar comments across the various as-
signments. In addition to this OS-specific feedback, several
students also felt that the assignments made them much
better C programmers (a relatively new language for them)
as well as code testers. One student mentioned on the file
system assignment:

I also am beginning to feel pretty comfortable
with C since so much of its ins and outs is used
to program the file system.

At the end of the semester, we also asked the 5 HWS
students, who had taken both the operating systems and in-
troductory architecture courses at HWS, if they found the
integration between the two courses helpful in their over-
all understanding of computer systems. All of the students
agreed that it was beneficial using Larc in both courses. One
student wrote:

I think the integration of the courses was im-
mensely helpful in giving me a better under-
standing of computer systems. The hands on de-
sign and coding experience was a very valuable
part of learning the course material, and using
Larc ... across the board made it easier to jump
into each new project.

There were also some negative comments. Many students
found errors or omissions in the write-up, which have sub-
sequently been fixed. Some students commented that the
assignments had a significant learning curve and it was hard
to get started. We have modified the assignment write-ups
with this in mind.

In addition, some students felt that it was hard to com-
plete the assignments in the time allotted. However, often
these same students commented that they started the as-
signment too late. On average, students reported working
7-9 hours outside of class (for all the course work), which
we thought was reasonable. Furthermore, for each project,

nearly all the students submitted working code albeit with
some minor bugs.

Finally, many students commented that testing was dif-
ficult. Most of these comments were made on the process
management assignment. One student states:

This is a difficult project to get fully working
because it can be very hard to debug given the
nature of the assignment. At the same time, I
think it is a valuable assignment because it does
a very good job of reinforcing the course material
and it is interesting to try and implement. The
problem is that it is so hard to get every detail
working properly.

In the future, we plan to explore ways to make the debug-
ging process easier for students, either by adding better test
programs or by adding new debugging tools to the infras-
tructure. Other students commented that testing was slow,
particularly for the process management assignment (which
probably added to the difficulty in testing). In this assign-
ment, memory is not paged (paging is added in the next
assignment), and so, the processor manager is inefficient.
We are looking for ways to address this in the future such as
requiring, for this assignment, all concurrently-running pro-
grams to reside in memory in order to avoid expensive disk
operations. This requirement would limit the size of the test
programs (since they would all need to simultaneously fit in
memory) but would make for faster testing.

We hope to address these negative comments in a future
version of VIREOS. In general though, we are happy with
the initial feedback we received from students.

6. FUTURE WORK
We plan to explore several directions of future work. First,

we want to look at incorporating interrupt-driven I/O into
the project. As this will represent more complexity and
work for the student, we will give instructors the option of
choosing between interrupt-driven I/O and polling.

We also want to look at incorporating new I/O devices
such as a graphical monitor and a mouse. The closer the
VIREOS system is to a commercial machine, the more ap-
pealing it will be to the student. But as with interrupt-
driven I/O, we plan to make these I/O devices optional,
and give instructors more flexibility in tailoring the project
to their own class.

We also want to incorporate some security into VIREOS
and potentially move from a single-user system to a multi-
user system. Students would implement mechanisms for au-
thenticating users and for protecting system resources (e.g.,
files), among other things.

We also plan on migrating VIREOS from C-- to ANSI
C. Although the programming experience is similar for the
two languages, there are some differences, which can make
it difficult when programming in C--.

In addition, we plan on adding a set of tools to ease the
difficult debugging process. For instance, we hope to add a
graphical debugger to the toolset to allow students to step
through their operating system code. We will also look for
other tools and resources to make debugging VIREOS easier
for the student.

Finally, we plan to add applications to the VIREOS/Larc
system to make it more usable and appealing to the student.

43

It currently includes only a shell, some basic shell utilities,
and few simple (text-based) games.

7. CONCLUSIONS
The VIREOS project is a new, simple, Unix-like, class-

room operating system running on the Larc educational ar-
chitecture. The VIREOS project uses a bottom-up structure
for assignments and can be well-integrated with a course
on introductory architecture, which also uses Larc. The
VIREOS project has many resources available on the Web,
including the project API, solution code, and configuration
files for running VIREOS on an FPGA. In fall 2009, we used
VIREOS in the classroom and the feedback from students
was generally favorable.

8. ACKNOWLEDGMENTS
Professor John Vaughn at Hobart and William Smith Col-

leges gave valuable input and advice on this work. Marcela
Melara was supported by a generous grant from the Office of
the Provost at Hobart and William Smith Colleges. Finally,
the anonymous reviewers provided helpful feedback.

9. REFERENCES
[1] Altera Coorporation. DE1 Development and

Education Board – User Manual, 2006.

[2] M. D. Black. Build an operating system from scratch:
a project for an introductory operating systems course.
In SIGCSE ’09: Proc. of the 40th ACM tech. symp. on
computer science education, pages 448–452, 2009.

[3] D. Brylow. An experimental laboratory environment
for teaching embedded operating systems. In SIGCSE
’08: Proc. of the 39th SIGCSE tech. symp. on
computer science education, pages 192–196, 2008.

[4] W. A. Christopher, S. J. Procter, and T. E. Anderson.
The Nachos instructional operating system. Technical
report, 1993.

[5] M. L. Corliss and R. Hendry. Larc: A little
architecture for the classroom. Journal of Computing
Sciences in Small Colleges, 24(6):15–20, 2009.

[6] R. Hess and P. Paulson. Linux kernel projects for an
undergraduate operating systems course. In SIGCSE
’10: Proc. of the 41st ACM tech. symp. on computer
science education, pages 485–489, 2010.

[7] D. A. Holland, A. T. Lim, and M. I. Seltzer. A new
instructional operating system. In SIGCSE ’02: Proc.
of the 33rd SIGCSE tech. symp. on computer science
education, pages 111–115, 2002.

[8] D. Hovemeyer, J. K. Hollingsworth, and
B. Bhattacharjee. Running on the bare metal with
GeekOS. In SIGCSE ’04: Proc. of the 35th SIGCSE
tech. symp. on computer science education, pages
315–319, 2004.

[9] O. Laadan, J. Nieh, and N. Viennot. Teaching
operating systems using virtual appliances and
distributed version control. In SIGCSE ’10: Proc. of
the 41st ACM tech. symp. on computer science
education, pages 480–484, 2010.

[10] J. Lenz. Wisc C-- compiler. URL:
http://pages.cs.wisc.edu/∼lenz/compiler.html, 2003.

[11] H. Liu, X. Chen, and Y. Gong. BabyOS: a fresh start.
In SIGCSE ’07: Proc. of the 38th SIGCSE tech. symp.
on computer science education, pages 566–570, 2007.

[12] B. Pfaff, A. Romano, and G. Back. The Pintos
instructional operating system kernel. In SIGCSE ’09:
Proc. of the 40th ACM tech. symp. on computer
science education, pages 453–457, 2009.

[13] A. Schmidt, A. Polze, and D. Probert. Teaching
operating systems: windows kernel projects. In
SIGCSE ’10: Proc. of the 41st ACM tech. symp. on
computer science education, pages 490–494, 2010.

[14] A. Silberschatz, P. B. Galvin, and G. Gagne.
Operating System Concepts. John Wiley & Sons, Inc.,
8th edition, 2008.

[15] W. Stallings. Computer Organization and
Architecture: Designing for Performance. Prentice
Hall, 7th edition, 2005.

[16] Sun Microsystems, Inc. javadoc - The Java API
Documentation Generator, 2002. URL:
http://java.sun.com/j2se/1.5.0/docs/tooldocs
/solaris/javadoc.html.

[17] A. S. Tanenbaum. Modern Operating Systems. Pearson
Prentice Hall, 3rd edition, 2008.

[18] A. S. Tanenbaum and A. S. Woodhull. Operating
Systems: Design and Implementation. Pearson
Prentice Hall, 3rd edition, 2006.

[19] D. van Heesch. Doxygen Manual, 2010. URL:
http://www.doxygen.org/manual.html.

44

