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Abstract—We propose Atlas , a framework that enables
fully attestable ML pipelines to address ML supply chain
risks. Atlas leverages runtime pipeline monitoring and open
specifications for data and software provenance to collect
model artifact integrity and end-to-end lineage metadata.
Atlas combines trusted hardware and transparency logs to
enhance metadata integrity and enable efficient verification of
ML pipeline operations, from training through deployment.
Our prototype implementation of Atlas integrates open-source
tools to build an ML lifecycle transparency framework.

1. Introduction

In recent years, machine learning (ML) models,
have become increasingly popular. The pervasive use of
large language models (LLMs), in particular, and multi-
stakeholder involvement in model creation and deployment
exacerbate security and privacy risks. These considerations
are emphasized by the global nature and the complexity of
large-scale ML deployments with different lifecycle stages
(e.g., training dataset collection, execution of training).

Each stage is vulnerable to malicious or dishonest
parties. For example, data can be poisoned [1], [2] during
collection or training. Service providers executing out-
sourced training can shorten or omit critical steps to reduce
their cost. Popular model hubs hosting pre-trained models
are vulnerable to compromises that may result in corrupted,
reduced, or malicious model distributions [3], [4]

On the other hand, recent regulations [5], [6] require
model builders and other stakeholders to provide evidence
of ML model security and trust. They may need to prove
low bias in their training data, offer easily verifiable
performance claims, or demonstrate end-to-end integrity
of model creation in high risk domains.

To address these challenges, integrity of the entire ML
lifecycle must be recorded verifiably – beginning with the
data, through the training, and finally, the evaluation and
deployment. Was the data modified? Did the hardware and
software environment adhere to the specification? Did the
contractor follow the specified training procedure? Can I
trust the evaluation? How can I guarantee that I am interact-
ing with the intended model? These are example questions
that showcase the breadth of the involved challenges that
must be tackled to provide end-to-end security.

We introduce Atlas, a framework for enhancing the
security and transparency of the lifecycle of ML models.
Atlas establishes the baseline of fundamental components
and capabilities needed for comprehensive provenance

tracking at each stage of the ML lifecycle. Thus, rather
than preventing attacks entirely, Atlas detects tampering
by verifying the ML lifecycle.

Atlas addresses two challenges unique to ML lifecycle
transparency. First, in contrast to the clear dependency
trees of traditional software, datasets and algorithm code
are tightly coupled in ML models, creating significantly
more intricate provenance graphs [3]. Attesting the integrity
of these relationships requires mechanisms that can track
cross-organizational transformations across heterogeneous
artifacts of varying sizes and formats [7].

Hence, Atlas monitors ML pipelines during execution
and automatically collects ML system information using
several data and software provenance frameworks. To
strengthen the integrity of provenance generation, Atlas
relies on hardware trusted execution environments.

Second, models are not static binaries – they can be
further customized by downstream users. That is, ML
models undergo a non-linear lifecycle where deployment
results often necessitate refinement, creating feedback loops
between inferencing and data processing [8].

This iterative process requires special adaptations to
provenance tracking mechanisms. Atlas represents these
non-linear development paths and enables cryptographic
auditing using Merkle trees [9].

We claim the following contributions:
1. We introduce Atlas, a framework designed for end-

to-end ML lifecycle transparency.
2. We instantiate Atlas using Intel Trust Domain eXten-

sions [10] and metadata-based provenance tracking.
3. We evaluate our Atlas prototype through a fine-tuning

case study with a BERT model [11], [12].

2. Background & Related Work

Data Provenance & Authenticity. Provenance and at-
tribution of media has recently received attention due to
the online proliferation of manipulated or forged content
using generative ML models [13], [14]. Prior work relies
primarily on cryptographic hashing and digital signatures
to provide data authenticity and integrity.

The Coalition for Content Provenance and Authenticity
(C2PA) specification [15], [16] digitally signs assertions
about content origin to provide tamper-evident data audit
trails [17], [18]. C2PA’s extensible metadata format also
makes it suitable for ML model artifacts [19].

The Open Source Security Foundation (OpenSSF)
Model Signing project [20] is a parallel effort focusing on



integrity and authenticity of trained models. Other prior
work [14], [21], [22] builds upon hashing and signing with
distributed ledger technologies to create transparent and
immutable content or provenance records.

These techniques are crucial building blocks for ver-
ifying ML model artifact authenticity and provenance,
but each alone is insufficient for end-to-end ML supply
chain transparency. In contrast, Atlas aims to integrate
such techniques into ML systems to track model artifact
provenance directly where the transformations occur.
Supply Chain Integrity. Recent cybersecurity regula-
tions [23], [24] have shifted industry focus toward detecting
supply chain threats via software dependency tracking with
SBOMs [25]. Similarly, the AIBOM framework [26], [27]
focuses on ML model supply chain management.

Complementing BOM, efforts like OpenSSF Supply
Chain Levels for Software Artifacts (SLSA) [28] and
SPDX Build [29] collect build provenance, i.e., metadata
describing how a particular artifact was produced. This
approach is also being considered for ML model fine
tuning [30]. Building on such supply chain metadata efforts,
a number of frameworks [31]–[33] provide mechanisms
for collecting, digitally signing and verifying authenticated
claims across supply chain steps.

Atlas borrows concepts from supply chain integrity
to support multiple types of software artifact provenance
at any stage of the ML lifecyle, providing a more com-
prehensive view of a model’s supply chain. Works about
evidence for other properties of the ML lifecycle such as
assurance [8] are complementary.
Model Lineage Tracking. The EQTY Lineage Ex-
plorer [34] tracks model artifacts throughout the training
process, capturing relationships between datasets, model
checkpoints and hyperparameters. However, unlike Atlas ,
it lacks cryptographic authenticity properties and focuses
primarily on manually collected development-time lineage,
rather than automatically capturing and linking information
across the entire ML lifecycle.

ML experiment trackers like Weights and Biases [35],
Neptune [36] and Kubeflow Pipelines [37] offer detailed
run-time logging of model metadata about training runs,
metrics, and model artifacts. These tools do not integrate
transparently with common ML frameworks, and they
typically provide only unauthenticated metadata. Atlas , on
the other hand, seeks to make model lineage verifiable and
support integration into ML frameworks like PyTorch [38].
Hardware-Based Security for ML. Recent developments
in trusted execution environment (TEEs) technologies have
made it more practical to run large-scale systems and
workloads [39], [40], including ML pipelines. Chrapek et
al. [41] deployed and optimized a large language model
(LLM) inside a TEE, showing how secure enclaves help
protect LLM code and data while in use. They maintain
practical performance in two TEE configurations based
on Intel Software Guard eXtensions (Intel SGX) [42] and
Intel Trust Domain eXtensions (Intel TDX) [10].

Laminator [43] and PraaS [44] demonstrate the appli-
cation of TEEs to ML model or dataset property attestation
and verification. Several efforts [7], [45], [46] use TEEs to
build confidentiality frameworks for different ML lifecycle
stages. These works are complementary to Atlas and may
enable us to extend our framework.

Mo et al.’s survey [47] evaluates 38 works that use
various TEE implementations to enhance the privacy and
integrity of ML training and inference operations. The
survey highlights several gaps, including the protection of
full ML lifecyles, which is the primary focus of Atlas .

We provide additional background in Appendix A.

3. System Overview & Threat Model

3.1. Terminology

In Atlas, an ML model is composed of several ar-
tifacts that include the training dataset, ML algorithm,
ML framework (e.g., PyTorch), model configuration (e.g.,
hyperparameters, weights), and metadata (e.g., license).

The ML lifecycle consists of various stages, including
data preparation, training, evaluation and deployment. A
common synonym for ML lifecycle is “ML supply chain”,
so we use these terms interchangeably in the paper.

The ML pipeline defines the sequence of operations or
a workflow that transforms a model artifact at a particular
stage of the ML lifecycle [48]. To support standardization
and repeatability, the pipeline also facilitates workflow
management and automation.

The ML system is the set of hardware and software
components that implement and execute an ML pipeline.
For example, an ML system for training may include
orchestration tools, an authentication service, storage sys-
tems, automation infrastructure, and specialized compute
hardware (e.g., GPUs, TPUs, or custom accelerators).

In Atlas , metadata describes two mains aspects about
an ML model. First, provenance metadata refers to the
origin and history of custody of a model artifact, including
its history of transformations as it traverses the ML
lifecycle. Pipeline metadata, in turn, describes the ML
systems and specifics about the operations that produced
a model artifact.

An attestation in Atlas refers to any digitally signed
metadata and serves as evidence for model artifact or ML
system authenticity, integrity and provenance. Attestations
may be generated by hardware or software.

3.2. System Model

In Atlas, we target the multi-stakeholder ML model
lifecycle setting.

3.2.1. Stakeholders. The Artifact Producers are individ-
uals and organizations that create ML model artifacts to
provide or sell them to other parties. Since the artifacts
may represent intellectual property and/or make use of
personally identifying information (PII), producers have
business and regulatory reasons to preserve their confiden-
tiality. To save costs, artifact producers often outsource
the operation of ML systems to external service providers.

ML-as-a-Service (MLaaS) providers operate and
maintain the compute infrastructure needed to run ML
systems. MLaaS providers may offer ML-specific services
that leverage general-purpose compute (e.g., [49]–[51]), or
provide special-purpose systems (e.g., [37], [52]) that can
build and run third-party ML systems.

A Hub is a system that stores and distributes model
artifacts. Thus, model pipelines typically ingest and output



artifacts to and from hubs during their execution, enabled
by interfaces exposed by MLaaS providers. Hubs may
be operated by artifact producers themselves or by third-
party vendors, containing open or closed source artifacts
(e.g., [53], [54]).

A Transparency Service in Atlas is responsible for
generating, storing and distributing the metadata necessary
to verify the authenticity, integrity and provenance of model
artifacts. We envision model vendors and independent
parties operating transparency services in practice.

Transparency services interface with MLaaS providers
through attestation clients that run alongside ML systems
to obtain and attest provenance and pipeline metadata. On
the server side, a transparency log contains the known
good values (i.e., golden values) of model artifacts and
ML system components, submitted by model producers
and MLaaS providers, as well as attestations collected by
the clients throughout the ML lifecycle.

Verification Services evaluate or audit a particular ML
model’s lifecycle with the goal of detecting unintended
or malicious tampering with the model at any stage. In
practice, model users, vendors or regulatory entities may
operate verification services.

Using the golden values1 and attestations obtained
from a transparency service, a verification service evaluates
each ML pipeline and artifact of interest against a set of
expectations. For example, a model producer may check
that the MLaaS provider ran the expected pipeline code,
or a model user may verify that a fine-tuned model was
produced from the expected foundation model.

A Model User interacts with a model in an inferencing
pipeline, or in a downstream ML pipeline as a dependency,
such as a fine-tuning or evaluation pipeline (see §3.2.2).

3.2.2. ML Lifecycle. In Atlas , we consider four high-level
stages in the ML lifecycle. Each builds upon the outputs
and feedback from the others, forming a continuous cycle
in which models evolve based on real-world usage.
1. Data processing: Raw data is collected, sanitized and
processed into smaller units (e.g., tokens) and collated into
a structure ingestable during training or evaluation.
2. Training: A training algorithm processes a given dataset
using an ML system. The output is an ML model.
3. Evaluation: Following training, model properties like
its performance and accuracy undergo further fine-tuning
and evaluation using a testing dataset.
4. Deployment: After training and evaluation, an ML
model is deployed to a production system configured
for inferencing. New data obtained from clients during
inference are sent back to a data processing pipeline to
enhance the training dataset and the model. Model use
must comply with local laws or corporate policies.

3.3. Threat Model

We consider an adversary whose goal is to produce
a tampered artifact, e.g., containing a hidden malicious

1. Golden values should be independently verified to establish their
trustworthiness. Current approaches for auditing golden values include
reproducibility [55] and endorsements [56]. Atlas is agnostic to the
chosen method and assumes that evidence of golden value verification
can be made available via a transparency service.

component, so that a transparency service generates a
legitimate signature on the artifact or its metadata.

Thus, Atlas aims to detect such tampering introduced
via the ML supply chain.2 Specifically, we consider tam-
pering by MLaaS providers, hubs and artifact producers,
while model users, transparency and verification services
are trusted in Atlas .

Compromised MLaaS providers and hubs may involve
malicious insiders, or external adversaries seeking to
subvert these systems by exploiting vulnerable compo-
nents. Given their central position in the lifecycle, MLaaS
providers and hubs may thus be able to compromise model
integrity at various stages.

For example, a malicious MLaaS provider can poison
the training data during the curation step of the data
processing stage leading to backdoors. A compromised
hub may, for instance, present a dataset or model with a
mismatched signature (e.g., to a different model, or any
of its component artifacts) to a model user or MLaaS
provider, so that pipelines in subsequent stages of the ML
lifecycle may ingest compromised dependencies.

As a result, these compromises propagate through the
ML lifecycle if they go undetected, ultimately leading to
vulnerable ML models at the deployment stage. This risk
is exacerbated if a hub colludes with an MLaaS provider
to introduce or accept compromised ML pipeline inputs.

Artifact producers, on the other hand, may seek to
compromise ML models to bypass regulatory require-
ments, introduce exploitable vulnerabilities or steal private
information for profit (e.g, [60]). Thus, producers may
collude with other untrusted stakeholders, or intentionally
inaccurately declare their dependencies, to undermine the
integrity of their artifacts.

3.3.1. Trusted Parties. Atlas considers the model users,
transparency and verification services in an ML lifecycle to
be trusted. We make the following assumptions about the
systems supporting these stakeholders: 1) the hardware and
cryptographic primitives are implemented correctly and do
not contain known vulnerabilities; 2) a separate PKI system
exists and organizations representing the stakeholders
follow best practices for key management, network security
and access control.

Further, running attestation clients in TEEs allows
us to trust Atlas metadata generation, or detect attempts
of tampering by malicious MLaaS providers. Similarly,
model users and verification services can trust the integrity
of golden values and attestations stored in Atlas trans-
parency logs (or detect tampering) via their tamper-evident
construction (see §4.2). Verification services are trusted
to properly evaluate attestations, including their digital
signatures, against pre-specified model user expectations.

3.3.2. Out of Scope. Many available TEEs provide
confidentiality features, but addressing PII and model
intellectual property concerns end-to-end requires a more
comprehensive framework (e.g., [7], [61]). We plan to
explore confidentiality within Atlas as future work.

2. Analogously to software correctness (which also applies to ML
algorithms and systems), establishing dataset benignity, model quality and
safety is a complementary area of research that relies on certifications, e.g.,
adversarial robustness [57], differential privacy [58], or poisoning [59].
We leave extending Atlas with such mechanisms as future work.



While a critical threat to deployed AI applications,
Atlas does not address inference time black-box attacks
(e.g., evasion attacks, model extraction, membership infer-
ence) caused by malicious users; solutions to reduce this
risk [62]–[64] are complementary.

Side-channel attacks against hardware enclaves, physi-
cal attacks on hardware infrastructure, and network-level
denial of service attacks are also beyond the scope of
Atlas . These attacks are the subject of a large body of prior
work [47], and these complementary security measures
could be added to deployments of Atlas .

3.4. Design Requirements

We define the following integrity and operational
requirements for Atlas:
R1: Artifact tampering is detectable. To provide model
artifact integrity, Atlas must enable verification services
to detect unexpected modifications to model artifacts.
R2: Every model transformation is attested. Because
adversaries may seek to tamper with model artifacts after
they are produced by a pipeline, Atlas attestation clients
must record every model transformation in authenticated
metadata as evidence for the process, including all inputs
to the transformation.
R3: Verifiable model lineage. Atlas verification services
must be able to detect unintended/malicious changes by
MLaaS providers to the expected stages of the lifecycle
(e.g., pipelines operating out of order, or being omitted),
from initial data processing through model deployment.
R4: Strongly isolated ML systems. To detect tampering
with a pipeline during its execution, Atlas must restrict
access to its ML system by malicious MLaaS providers,
and contain compromises from propagating beyond the
execution environment.
R5: Pipeline agnostic. To facilitate adoption, Atlas must
be agnostic to any ML pipeline that integrates it.
R6: Efficiency. We seek to minimize the computational
and storage overheads incurred by Atlas to enable the
implementation and deployment of Atlas in ML systems
using commodity platforms and services.

4. Atlas Framework

Atlas introduces two core components to the ML
lifecycle: 1) the transparency service interacting with
MLaaS providers; 2) the verification service for validating
model integrity and provenance.

The core techniques underlying the transparency and
verification services are designed to be general, allowing
them to remain agnostic to the particular ML lifecycle
stage or pipeline they are applied to (R5). Fig. 1 depicts
an example ML model lifecycle with Atlas .

4.1. Attestation Client

Atlas combines mechanisms for artifact and runtime
environment integrity to provide transparency across the
stages of the ML lifecycle. Thus, MLaaS providers inte-
grate an Atlas attestation client with an ML system, each
running within a dedicated trusted execution environment
(TEE) (e.g., Intel TDX [10] or AMD SEV-SNP [65]).

Data Scientist

Model /
Dataset Hub

Atlas
Attestation Client

Sidecar
Container

Monitoring

Atlas
Verification Service

Third-party
Regulator

1. Initial Setup 2. Data Preparation

3. Environment Validation

4. Training Process Monitoring
Attestations

Signed
Cryptographic
Measurements

5. Model Verification

5a. Verify Attestations 6. Deployment
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Checkpoint Files

Intel TDX Hardware TEE

BERT Model
Training
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Log

Monitoring Components

• PyTorch hooks
• Filesystem monitor
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Figure 1. Atlas workflow for ML lifecycle transparency in a BERT
Meta [11], [12] fine-tuning process. The attestation client monitors
ML systems running in TEEs throughout the pipeline stages, collecting
provenance metadata from initial deployment through verification.

TEEs serve two purposes in Atlas . First, TEE hardware-
enforced memory integrity detects runtime tampering with
the attestation client and ML system components by the
MLaaS host (including privileged software like the OS or
hypervisor). Second, TEEs provide a hardware-based root
of trust for provenance and pipeline metadata.

4.1.1. Artifact Measurements. For every artifact that is
ingested into and output by an ML pipeline, the attestation
client computes a cryptographic measurement using a
collision resistant hash function resulting in a unique,
immutable identifier. If an artifact is tampered with, its
measurement will differ from its golden value, allowing
Atlas verification services to detect modifications between
lifecycle stages (R1). Artifact producers are expected to
publish digitally signed measurements as golden values
whenever an artifact is first created.

4.1.2. Model Transformation Integrity. The attestation
client is also responsible for generating provenance and
pipeline metadata describing the transformation process
and ML system that produced a new model artifact. Before
pipeline execution begins, the client obtains a hardware
attestation to its initial state from its TEE, which includes
measurements of the client’s execution environment.

At the start of pipeline execution, the attestation client
remotely attests the ML system’s TEE [10], [65], verifying
the integrity of the pipeline’s compute environment. Specif-
ically, the client checks that the ML system’s firmware,
OS and pipeline code match the golden values published
by the MLaaS provider to ensure that a pipeline starts
from a known good state.3

Throughout pipeline execution, TEE hardware enforces
memory integrity checks and isolation of executing attesta-
tion client/ML system code and in-memory data, reducing
the risks of interference by compromised MLaaS providers
or any co-located ML systems (R4). Further, the attestation
client continuously monitors an ML system’s execution,
which allows it to determine when artifacts move into or

3. Because only select TEE implementations [66] provide built-in
support for attested interactions with I/O devices or ML accelerators like
GPUs, it is challenging to distinguish between benign and malicious
runtime modifications to pipelines via the network, disk, etc (see §6.4).



outside of the system, and to collect information about
operations that transform the input artifacts (see §5). For
example, during data processing, the client tracks dataset
modifications and preprocessing operations; during model
training, Atlas captures state changes in model weights,
hyperparameters, and configurations.

When pipeline execution concludes, the attestation
client generates pipeline metadata containing all collected
ML system runtime information and the ML system’s TEE
attestation. Then, the client creates provenance metadata
including 1) artifact measurements, 2) operations producing
the outputs, 3) TEE attestation for the client, 4) pipeline
metadata.

The attestation client then digitally signs the prove-
nance metadata with keys it generates within the TEE,
cryptographically binding ML artifacts to the pipeline and
precursor artifacts that created them in a transformation
attestation (R2). The client uploads this attestation to the
transparency service.

4.1.3. Provenance Chains. To enable ML model prove-
nance tracking throughout all of its lifecycle stages, the
attestation client embeds the cryptographic hash of precur-
sor artifact attestations into every artifact’s transformation
attestation. These hash values are digitally signed as part
of the transformation attestation, enabling detection of
unexpected/malicious modifications between attested ML
artifact transformations. Thus, Atlas attestation clients
establish an authenticated, verifiable provenance chain
representing a model’s lineage relationships (R3).

4.2. Transparency Log

The transparency service’s log makes all published
golden values and attestation client-generated metadata
available to verification services. To enable efficient inser-
tion and provenance verification while accommodating the
cyclical nature of the ML lifecycle, Atlas relies on two
data structures (R6).

First, to provide cryptographic tamper-evidence for the
stored values, the transparency log is constructed using
an append-only Merkle tree [9], meaning that pipeline
metadata can be efficiently inserted in the right-most
empty leaf node of the tree (e.g., as in [32]). Second,
to enable more efficient verification of provenance across
pipelines (or even cycles of the ML lifecycle), Atlas can
represent each discrete pipeline/cycle using a different
Merkle tree. These separate trees are linked by embedding
the Merkle root hash of the preceding pipeline or cycle
into the “latest” Merkle tree structure (e.g., as in [67],
[68]), providing a temporal cryptographic tree chain.
Optimizations to chained Merkle trees have been developed
in prior research [68]–[70].

4.3. Verification Service

Stakeholders in Atlas seek to validate that artifacts
have not been tampered with and that they were produced
by expected pipelines running in high-integrity execution
environments. To respond to verification requests, the Atlas
verification service obtains golden values and transforma-
tion attestations from transparency logs relevant to an
artifact in question.

First, the verification service validates the digital sig-
natures on attestations and golden values to authenticate
their producers. It then checks whether the artifact matches
its golden value. If these checks pass, the service inspects
the transformation attestations to confirm the ML system
and pipeline operations ran as expected based on TEE
attestations and golden values. Atlas validates artifact
lineage by traversing the provenance chain, enabling
efficient verification through batching related artifact types
and maintaining a cache of verified transformations. This
avoids repeated inspection of unchanged artifacts (R6),
which particularly benefits iterative ML pipelines.

5. Implementation

Our proof-of-concept implementation integrates with
PyTorch [38] and Kubeflow [37] through standard APIs
for metadata tracking and execution monitoring within ML
pipelines. This integration approach enabled us to avoid
significant modifications to our case study pipelines (§6),
while maintaining Atlas’ security and transparency en-
hancements. We leverage Intel TDX [10], a virtualization-
layer TEE, to provide the hardware-based security primi-
tives for ML systems and attestation clients in Atlas .

The attestation client is implemented as two compo-
nents. First, a continuous ML system monitor integrates
with PyTorch to collect metadata for a given pipeline.
Second, the metadata sidecar (§5) running inside a dedi-
cated Intel TDX TEE generates ML artifact and pipeline
metadata in C2PA manifest format [16].

Due to current poor support for automated C2PA man-
ifest generation for ML models, we implemented a Rust-
based library and CLI4 that captures artifact measurements,
Intel TDX attestations, and digital signatures in C2PA
format. Supporting other software provenance formats [28],
[29] is future work.

We extend Sigstore’s Rekor [32] to support Atlas
C2PA-based model transformation attestations, validating
signatures and measurements to ensure only properly
signed artifacts are stored.

Out of space considerations, we provide additional
details about the implementation in App. B.

Atlas Workflow Example. We illustrate Atlas’s end-to-end
operations through an example with fine-tuning a BERT
model for sentiment analysis:

1) Pipeline Environment Provisioning: MLaaS
provider sets up Atlas attestation client and ML
system monitor in Kubeflow.

2) Data Preparation: Data scientist prepares and up-
loads custom dataset, with Atlas metadata sidecar
measuring and attesting the dataset using Intel TDX,
submitting attestation to the transparency log.

3) Environment Validation: Atlas sidecar verifies train-
ing environment integrity, adding TDX-based attesta-
tion to the C2PA manifest.

4) Training Process Monitoring: Attestation client
tracks (App. B.3):
• Model weight changes via PyTorch hooks
• Checkpoint creation and modifications
• Hyperparameter updates

4. Available at github.com/IntelLabs/atlas-cli



5) Model Verification: Third-party regulator verifies
model provenance using Atlas verification service.

6) Deployment: Model vendor deploys verified model
with provenance chain for user and application in-
tegrity validation.

Metadata Sidecar. Because the Atlas ML system mon-
itor runs alongside untrusted MLaaS provider code, the
attestation client’s metadata sidecar leverages TEE remote
attestation to detect tampering with the ML system monitor.
That is, the sidecar interfaces with the ML system to obtain
the Intel TDX-based compute environment attestations that
capture TEE state and ML system component measure-
ments, which are cryptographically anchored in hardware.
We use the Confidential Containers (CoCo) framework [71]
to implement the remote attestation procedure in the sidecar
and ML system monitor.

Once the ML system monitor’s integrity has been
validated, the sidecar generates and digitally signs C2PA
manifests. These include the sidecar’s and ML system’s
Intel TDX attestations, the received ML system metadata,
the measurements for the pipeline’s input and output arti-
facts, and hashes for any linked transformation attestations.
We describe a storage optimization in App. B.5.
Verification Service Implementation. For ease of imple-
mentation, the metadata sidecar also serves as a verification
endpoint allowing pipeline components to validate artifact
integrity against stored attestations. We optimize the perfor-
mance of our staged verification system in three ways: 1) by
processing changes incrementally and caching to avoid re-
verifying unchanged components, 2) via batch processing
of verification operations, and 3) parallel verification paths
for independent component classes. App. B.6 provides
additional details.

6. Evaluation

We validate our framework through a security analysis,
preliminary performance testing and a case study with a
BERT Meta [11], [12] fine-tuning pipeline.

6.1. Security Analysis

Atlas provides measures against the threats outlined
in §3.3 through multiple security mechanisms.

For MLaaS provider threats, the hardware-rooted TEEs
in Atlas isolate sensitive computations and detect ma-
licious insider tampering with executing ML pipelines.
The attestation client continuously validates the runtime
environment, generating ML system measurements that
are cryptographically bound to model artifacts.

Atlas counters hub threats by verifying artifact in-
tegrity through cryptographic measurements and signatures,
maintaining a provenance chain that identifies mismatched
signatures or tampered dependencies before they propagate.

Atlas mitigates artifact producer threats through com-
prehensive provenance tracking, providing an immutable
record of pipeline operations that detects undeclared de-
pendencies and intentional omissions.

6.2. Preliminary Performance Analysis

We conduct our experiments on Intel® Xeon® Gold
5520+ processors with 256 GB of RAM running Ubuntu

24.04 beta. Employing Atlas with the BERT Meta case
study’s CPU-only PyTorch-based fine-tuning pipeline,
where the provenance chain covers 20 artifacts (up to
120 for more complex pipelines). Our measurements
demonstrate near-linear scalability of verification time
across different chain lengths and model sizes.

Preliminary tests show Atlas security mechanisms
introduce minimal training overhead (under 8%), with
each C2PA provenance manifest (8KB) containing artifact
measurements, TEE attestations, and pipeline metadata.
Verification processes scale linearly with model size, and
our caching strategies reduce verification latency by up
to 50%, achieving near-constant time for cached (see §5)
component verification.

For large-scale operations, performance is maintained
through concurrent verification operations, cache optimiza-
tion, and selective invalidation for error handling. We plan
to conduct more extensive benchmarking in future work.

6.3. Case Study

BERT was selected for its complex architecture and
widespread production use. Our implementation covers
the complete lifecycle from pre-trained model fine-tuning
through deployment, with Intel TDX TEEs for attention
computations and weight updates.

Atlas secures instruction-based configuration using
JSON records with query-positive-negative text triplets,
tracking model adaptations and maintaining verifiable
records of hyperparameters and training progressions.

The BERT Meta implementation demonstrates perfor-
mance consistent with our analysis in §6.2.

6.4. Discussion & Limitations

Our implementation reveals limitations in current hard-
ware security. While Atlas provides TEE-based protection
for CPU operations [10], ML workloads rely on GPUs
and accelerators without equivalent security features [72],
creating security and trust boundaries between protected
and unprotected environments [73]. Emerging solutions
like confidential GPU computing show promise but have
performance trade-offs [74], [75].

Additionally, ML lifecycle transparency creates compet-
ing requirements between verification and confidentiality of
intellectual property and sensitive data [76], an important
challenge that Atlas needs to address in a future version.
Organizations must balance security requirements with
operational efficiency, considering factors like verification
frequency, attestation depth, and computational overhead.

7. Conclusion

The combination of hardware-backed security with
runtime provenance tracking in Atlas provides a founda-
tion for securing ML pipelines. Our case study shows
Atlas’s ability to integrate into existing ML frameworks
with reasonable performance. Interesting directions for
future work include: 1) provenance tracking of ML ac-
celerator-based computations, 2) end-to-end ML lifecycle
confidentiality, and 3) algorithmic verification methods and
model guardrails against attacks targeting model behavior.
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Appendix A.
Background & Related Work

In addition to the works highlighted in §2, we de-
scribe further details and approaches about related work
addressing ML lifecycle security and integrity.

A.1. Data Provenance & Authenticity

C2PA. The Coalition for Content Provenance and Authen-
ticity (C2PA) specification [15], [16] was initially intro-
duced by the Content Authenticity Initiative (CAI) [77] and
Project Origin [78] as a response to the growing challenge
of deepfakes [77] and digital content manipulation, gaining
traction in digital photography and journalism workflows.

LakeFS. LakeFS [22] combines Git-like semantics with
concepts from object stores such as S3 to provide a
version control system for data, including ML datsets.
Thus, LakeFS aims to capture data lineage by tracking
changes to stored data over time, and allowing ML appli-
cations to reference specific versions of the stored data.
This approach is meant to integrate with existing first-
party data processing pipelines, but does not facilitate
verification of data provenance by downstream consumers.
Atlas’ metadata centered approach, on the other hand,
enables first- and third-party ML dataset consumers to
track changes and check their provenance, even when they
may not have direct access to the data.

A.2. Supply Chain Integrity

BOM. Bills of Materials (BOM) have been employed
to document the list of components of a hardware or
software product for over three decades [79]. Software
BOM (SBOM) have been the focus of many industry and
academic efforts seeking to facilitate tracking software
dependencies and other metadata [25], to improve their
adoption, and to enhance SBOM integrity and privacy
(e.g., [80], [81]).

Similarly, the AIBOM framework [26], [27] focuses
on intended ML model supply chain management. Like
SBOM, AIBOM provide a mechanism for tracking model

software dependencies and maintaining model metadata.
At the time of writing, we are not aware of any frameworks
other than Atlas that utilize any sort of BOM data format
to track ML model components.

Authenticated claims. A number of frameworks for
capturing and verifying a variety of security claims and
metadata about the supply chain have been proposed.
in-toto [31] collects authenticated claims across supply
chain steps, including SBOM and SLSA metadata. In
particular, in-toto enables software development pipeline
owners and downstream artifact consumers to specify end-
to-end supply chain policies, and validate that only the
expected parties carried out specific steps in the pipeline
and artifacts underwent transformations in the expected
order. Given recent and upcoming enhancements that
further generalize the framework, in-toto may be a suitable
option for specifying and verifying end-to-end ML model
pipeline integrity policies in Atlas .

Sigstore [32] provides a transparency log-based in-
frastructure for issuing signing credentials and validating
digital signatures on supply chain artifacts and metadata.
Similarly, Supply Chain Integrity, Transparency and Trust
(SCITT) [33] is an architecture for implementing dis-
tributed ledger based supply chain integrity mechanisms,
providing global visibility and auditing for supply chain op-
erations and claims. The SCITT architecture also includes
confidential computing technologies that help ensure that
only authorized parties submit claims to the transparency
ledger.

Appendix B.
Implementation Details

B.1. Kubeflow Integration

The integration with Kubeflow is achieved through
custom operators and controllers that monitor pipeline
execution through Kubeflow’s Metadata V2 Beta API and
KFP API. Through the //apis/v2beta1/metadata
endpoint, we track execution contexts and maintain verifi-
able records of pipeline runs.

By interfacing with /apis/v2beta1/artifacts,
we track model artifacts and their lineage. The
metadata store provides structured information about
component dependencies and data flow through the
/apis/v2beta1/connections endpoint. Our sys-
tem correlates this information with integrity measurements
and hardware attestations, creating verifiable records of
pipeline execution states.

The metadata extraction leverages Kubeflow’s event
system through /apis/v2beta1/events, enabling
real-time capture of pipeline state transitions, component
execution details, artifact generation events, and parameter
updates. This structured approach enables verification
of pipeline states while maintaining compatibility with
existing workflows.

B.2. C2PA Metadata Examples

A typical execution record captured by our system
looks like:

{



"execution": {
"name": "training-run-132",
"state": "RUNNING",
"pipeline_spec": {

"parameters": {
"learning_rate": 0.001,
"batch_size": 32,
"random_seed": 42,
"optimizer_config": {

"type": "Adam",
"beta1": 0.9,
"beta2": 0.999

}
},
"runtime_config": {

"gcs_output_directory": "gs://...",
"tensorflow_version": "2.9.0"

}
}

}
}

For each execution, our system adds corresponding
integrity measurements and verification records:

{
"integrity_measurement": {

"component_id": "training-run-132",
"tdx_quote": "base64:...",
"environment_hash": "sha256:...",
"timestamp": "2024-01-15T10:30:00Z",
"parameter_hash": "sha256:..."

}
}

B.3. ML System Monitoring Procedures

Our proof-of-concept implementation leverages several
techniques to monitor ML pipeline activities with minimal
intrusion into existing workflows. The implementation
focuses on collecting runtime data about model weights,
hyperparameters, and execution context while maintain-
ing performance and compatibility with established ML
frameworks.

B.3.1. File System Monitoring in the Atlas Framework.
The Atlas sidecar implements a file system monitor written
in Rust that detects checkpoint creation and modification
events:

1: procedure INITCHECKPOINTMONITOR(dir, client)
2: Initialize directory and client references
3: Create empty checksum tracking map
4: Setup file system watcher
5: end procedure
6: procedure SETUPWATCHER
7: Create event listener for file changes
8: Start background monitoring thread
9: Register directory for change notifications

10: end procedure
11: procedure SCANCHECKPOINTS
12: for each checkpoint file in directory do
13: Compute file cryptographic checksum
14: Store checksum in tracking map
15: Register existing checkpoint in metadata
16: end for
17: end procedure
18: procedure ONFILECREATED(file)
19: if file is checkpoint type then

20: Compute checksum and record creation
21: Update checksum tracking map
22: end if
23: end procedure
24: procedure ONFILEMODIFIED(file)
25: if file is checkpoint type then
26: Compute new checksum
27: Retrieve old checksum from map
28: if checksums differ then
29: Update tracking map
30: Record modification in metadata
31: end if
32: end if
33: end procedure

B.3.2. Callback/Hook Registration in PyTorch. For our
BERT Meta case study, we implemented a callback system
that integrates with PyTorch’s event mechanisms. The
model monitoring component operates as follows:

1: procedure INITMODELMONITOR(model, client)
2: Store references to model and client
3: Register monitoring hooks on model
4: end procedure
5: procedure REGISTERHOOKS
6: for each layer module in model do
7: if module is neural network layer then
8: Attach forward hook for activation capture
9: if module has trainable weights then

10: Attach gradient hook for updates
11: end if
12: end if
13: end for
14: end procedure
15: procedure FORWARDHOOK(module, input, output)
16: Calculate unique layer identifier
17: Extract statistical metrics from output
18: Record activation data to metadata store
19: end procedure
20: procedure GRADIENTHOOK(gradient)
21: Calculate gradient magnitude
22: Record gradient event with timestamp
23: end procedure

Additionally,for some cases we extended PyTorch’s
standard training loop with epoch-level callbacks [82]:

1: procedure INITTRAININGCALLBACK(client)
2: Store reference to metadata client
3: end procedure
4: procedure ONEPOCHSTART(epoch, optimizer)
5: Create hash of optimizer configuration
6: Record epoch start event with config hash
7: end procedure
8: procedure ONEPOCHEND(epoch,metrics,model)
9: Capture cryptographic model state snapshot

10: Record completion with metrics and snapshot
11: end procedure

These hooks operate with minimal overhead while pro-
viding comprehensive visibility into the model’s evolution.

B.3.3. Configuration Wrappers in the Atlas Framework.
To extract hyperparameter access and modifications from
PyTorch, we implement transparent wrapper classes:

1: procedure INITTRACKEDCONFIG(config, client)



2: Store config and client references
3: Initialize version counter to zero
4: Record initial configuration state
5: end procedure
6: procedure GET(key)
7: Log access event to metadata store
8: Return value for requested key
9: end procedure

10: procedure SET(key, value)
11: Retrieve current value for key
12: Update configuration with new value
13: Increment version counter
14: Record modification in metadata
15: Update configuration state hash
16: end procedure
17: procedure RECORDSTATE
18: Generate hash of current configuration
19: Store versioned snapshot in metadata
20: end procedure
21: procedure GETCONFIG
22: Return copy of configuration
23: end procedure

B.4. Integration Between Framework and ML
Pipeline

For the BERT Meta case study, we developed an
integration layer that allows the framework components to
interact with the Python ML pipeline:

1: procedure INITBRIDGESERVICE(endpoint, dir)
2: Create metadata client connection
3: Initialize checkpoint monitor
4: Start bridge service
5: end procedure
6: procedure INITCONFIG(configJSON )
7: Parse configuration from JSON
8: Create configuration tracking wrapper
9: Generate unique tracking identifier

10: return tracking identifier
11: end procedure
12: procedure SCANCHECKPOINTS
13: Scan and register existing checkpoints
14: end procedure
15: procedure RECORDEVENT(type, data)
16: if type is epoch start then
17: Record epoch initialization
18: else if type is epoch end then
19: Record epoch completion with metrics
20: else if type is layer activation then
21: Record layer output statistics
22: else if type is gradient event then
23: Record gradient flow information
24: end if
25: end procedure

On the Python side, we implement a complementary
bridge client:

1: procedure INITBRIDGECLIENT(socketPath)
2: Connect to monitoring bridge service
3: end procedure
4: procedure SETUPMONITORING(model, config, dir)
5: Serialize configuration to JSON
6: Initialize configuration tracking

7: Scan existing model checkpoints
8: Create model monitoring hooks
9: Setup training loop callbacks

10: return monitoring components
11: end procedure
12: procedure RECORDLAYERDATA(layer, stats)
13: Package activation statistics
14: Send to bridge as layer event
15: end procedure
16: procedure RECORDGRADIENT(magnitude, time)
17: Package gradient information
18: Send to bridge as gradient event
19: end procedure
20: procedure RECORDEPOCHSTART(epoch, optHash)
21: Package epoch initialization data
22: Send to bridge as epoch start event
23: end procedure
24: procedure RECORDE-

POCHEND(epoch,metrics, hash)
25: Package completion metrics
26: Send to bridge as epoch end event
27: end procedure
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Figure 2. Altas sidecar collector showing data flow between Python ML
environment and framework: The diagram illustrates how monitoring
events are cached before being committed to the transparency log.

This hybrid architecture enables monitoring of the
BERT training process with minimal modifications to the
existing pipeline, while leveraging efficient system-level
operations for the monitoring infrastructure.

B.5. Attestation Client Storage Optimization

As a storage optimization, the attestation client’s meta-
data sidecar first stores all generated C2PA manifests
in a local cache layer before being committed to the
transparency log. The local cache maintains an indexed hi-
erarchy of manifests for efficient validation during pipeline
execution, before final storage in Rekor for tamper-evident
provenance tracking.

More specifically, we decompose manifests into con-
stituent components within the cache. The C2PA metadata
assertions, claim signatures, and pipeline metadata are



stored separately, with relationships maintained through a
reference system. This approach enables efficient updates
to specific manifest components, reduced storage redun-
dancy, optimized query performance, and scalable version
tracking.

B.6. Verification Service Optimizations
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Latest State
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Form Verification
Batches

Parallel Hash and
Signature Verification

Versions Match?Log Error
Invalidate Cache

Validate Component
Relationships
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Figure 3. Verification workflow implementation for Atlas components. The
system classifies artifacts and processes changes incrementally, preserving
cached states for unchanged components. Related artifacts are grouped
for batch processing, with parallel validation of relationships. During
errors, only affected components are invalidated, reducing verification
overhead while maintaining security guarantees.

For provenance chain validation, our verification ser-
vice implementation parallelizes verification of cross-
component dependencies, version compatibility and evalu-
ation result consistency. The system also maintains verifi-
cation checkpoints that serve as trusted reference points,
enabling partial verification from the last known good state
instead of complete chain recomputation.

Error handling focuses on computational efficiency
through targeted cache invalidation rather than complete
cache clearing. When verification failures occur, the system
preserves verified states while ensuring security through

selective invalidation. Preliminary testing shows these
optimizations reduce verification time by up to 50%
through parallelization and caching, while maintaining
security guarantees.

B.7. Framework Adaptability

The BERT deployment validated our framework’s
flexibility across different ML environments. The abstrac-
tion layer successfully handled variations in framework-
specific interfaces, from PyTorch’s hook mechanisms to
TensorFlow’s Keras callbacks, while maintaining consistent
security guarantees. Custom adapters enabled integration
without modifying existing ML infrastructure, demonstrat-
ing the framework’s ability to enhance security while
preserving established workflows.

Appendix C.
Adoption Considerations

C.1. Storage Optimizations

C.1.1. Storage and Scalability. Our analysis suggests
opportunities for optimizing manifest storage through
decomposed and hybrid architectures. Rather than stor-
ing complete manifests as single documents, separating
components like assertions, signatures, and metadata could
improve efficiency while maintaining security guarantees.
Organizations should consider distributed storage strate-
gies that balance immutability requirements with query
performance needs.

C.1.2. Decomposed Storage Model. Instead of storing
complete manifests as single documents, the system could
decompose manifests into their constituent components.
The assertion store, claim signatures, and metadata could
be stored separately, with relationships maintained through
a reference system. This approach would enable more effi-
cient updates and queries of specific manifest components.

The decomposed model could leverage distributed
ledger technology (DLT) [83] for critical manifest com-
ponents while maintaining bulk data in optimized storage
systems. This hybrid approach would:

• Store cryptographic proofs and signatures on the
distributed ledger for immutability

• Maintain manifest metadata and relationships in graph
databases for efficient querying

• Use object storage for large artifacts like model
weights and datasets

• Link components through cryptographic references
preserved in the ledger

C.1.3. Hybrid Storage Architecture. A hybrid approach
could maintain critical verification data in Rekor for its
transparency guarantees while storing detailed manifest
data in optimized storage systems. This would balance the
need for immutable proof of existence with efficient data
access and management.

These storage optimizations could significantly reduce
operational overhead while maintaining the security guar-
antees of our framework. Performance testing indicates
potential reduction in storage requirements and query
latency through these alternative approaches.



C.2. Deployment Guidelines

C.2.1. Organizational Adaptations. Organization-
specific adaptations are necessary to align with existing
infrastructure and security policies. Key considerations
include:

• Integration with current MLOps platforms
• Alignment with existing security monitoring systems
• Customization of verification policies
• Adaptation to specific hardware security capabilities
• Compliance with organizational security standards

C.2.2. Security Requirement Balance. Security require-
ment balance directly impacts operational efficiency. Orga-
nizations must determine appropriate verification frequen-
cies and depth based on their risk profile and performance
requirements. For instance, continuous hardware attestation
of all pipeline components provides maximum security but
introduces significant overhead. A more balanced approach
might implement full verification at critical pipeline stages
while using lightweight checks during intermediate steps.

C.2.3. Computational Overhead Management. Com-
putational overhead management becomes crucial when
scaling the framework across large ML operations. Our
implementation shows that intelligent caching of verifi-
cation results and batch processing of integrity checks
can significantly reduce overhead. Organizations should
consider:

• Strategic placement of verification checkpoints - Or-
ganizations can tailor verification intensity based on
their specific security needs and operational context.
While financial or healthcare institutions might re-
quire comprehensive verification throughout their ML
pipeline, research or development environments might
focus verification efforts primarily on model publi-
cation or deployment stages. This flexible approach
enables efficient resource utilization while maintaining
appropriate security levels for each use case.

• Optimization of hardware attestation frequency - By
analyzing pipeline characteristics and risk patterns,
attestation frequency can be tuned to concentrate on
high-risk operations while reducing overhead during
stable processing phases.

• Efficient manifest storage and retrieval mechanisms
- The system maintains an indexed store of mani-
fests with hierarchical organization, enabling quick
validation of model lineage while managing storage
overhead for long-term provenance tracking.

• Parallel verification processing where possible - This
approach utilizes available computational resources
effectively by running verification operations concur-
rently when component dependencies allow.

Appendix D.
Future Work

Several potential enhancements could extend our frame-
work’s capabilities and applicability:

Distributed Training Support. The current framework
could be enhanced to handle multiple TEEs coordinating

across training nodes, with cross-node attestation and verifi-
cation protocols. This would require developing protocols
for maintaining integrity across distributed components
while managing the additional complexity of verifying
inter-node communications and state synchronization [73].

Federated Learning Compatibility. Our current frame-
work could be extended to support federated learning
environments, particularly through integration with In-
tel’s OpenFL (Open Federated Learning) [84] framework.
OpenFL’s architecture, which separates aggregator and par-
ticipant nodes while maintaining model security, presents
unique opportunities and challenges for provenance track-
ing. The framework would need to extend its attestation
and verification protocols to handle distributed model
updates while preserving the privacy guarantees inherent
in federated learning.

Key considerations include tracking model aggrega-
tion operations, verifying participant contributions, and
maintaining cryptographic proofs across federation rounds.
OpenFL’s existing security features, including its support
for secure aggregation and TEE integration, provide natural
integration points for our provenance framework. The
challenge lies in extending our verification protocols to
handle the partial model updates and differential privacy
mechanisms [85] common in federated learning scenarios.

Enhanced Scalability Features. Support for more complex
ML architectures, particularly for multi-model systems and
ensemble methods, would expand the framework’s utility.
This would require developing verification protocols for
model composition and interaction, tracking dependencies
between component models, and maintaining provenance
across model combinations [86].

The framework could also be extended to support dy-
namic trust models, allowing for flexible trust relationships
between different components and participants in the ML
pipeline.

Algorithmic Security Enhancements. Our framework’s
modular design allows for integration of additional algorith-
mic security methods to enhance pipeline protection. Model
watermarking techniques [87], [88] could be incorporated
to embed verifiable ownership proofs directly into model
weights, providing an additional layer of provenance
verification. These watermarks would be included in the
manifest chain, creating cryptographically verifiable links
between model versions and their origins.

Verification Protocol Extensions. Our staged verification
system could be extended to support dynamic trust models.
This would allow more flexible verification policies based
on component criticality and risk levels, while maintaining
our core security guarantees. The current implementation’s
classification system provides a foundation for such policy-
based verification.

Neural fingerprinting [87], [89] methods could extend
our verification capabilities by enabling detection of unau-
thorized model modifications or derivatives. By maintain-
ing fingerprint signatures in our provenance records, the
framework could track model lineage even when traditional
hash-based verification is insufficient. This is particularly
valuable for scenarios involving fine-tuning or transfer
learning.



Property attestation mechanisms could verify spe-
cific algorithmic characteristics of models throughout the
pipeline. For example, robustness guarantees [90], fairness
metrics [91], or backdoor resistance [92] could be measured
and included in the manifest chain. These properties
would enhance the framework’s ability to detect subtle
manipulations that might not affect model hashes but could
impact model behavior.

Throughout this process, Atlas provides tamper-evident
records through its transparency log and TEE-based attes-
tations. The verification service requires access to both the
model artifacts and the cryptographic measurements in the
transparency log to confirm the integrity of the complete
ML pipeline, ensuring that no unauthorized modifications
occurred during the model’s lifecycle.
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