
Protecting the IoT Against Data Leaks through
Intra-Process Access Control

Marcela S. Melara, David Liu, Edward W. Felten, Michael J. Freedman
Princeton University

Background
Third-party libraries are extremely prevalent in the IoT:
● 99% of studied IoT applications import at least one third-party library
● Out of top 50 studied Python libraries:

Problem: Developers do not/cannot inspect and vet imported third-party
code
⇒ security & privacy vulnerabilities go undetected

Motivating Threats:
● Our experiments: successfully modified function pointers, local variables

in the Python runtime call stack from (native) libraries.
● Reported vulnerabilities in Python libraries 2012-2017:

Our goal: Prevent malicious third-party libraries from accessing sensors or
data other than those intended by the developer.

Prior Work: Why can’t we apply isolation solutions for Android or IoT?
● Isolate libs into separate apps, apply Android permissions (e.g. [1-3])

⇒ Linux-based IoT doesn’t have built-in mandatory access control
● Android native library isolation:

⇒ SFI [4] requires access to library source code
⇒ hardware fault isolation [5] is platform-dependent

● Prior IoT solns: poor usability for developers [6] and end users [7]

References:
[1] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. AdDroid: Privilege separation for applications and advertisers in Android. ASIACCS, 2012.
[2] S. Shekhar, M. Dietz, and D. S. Wallach. AdSplit: Separating smartphone advertising from applications. USENIX Security, 2012.
[3] M. Sun and G. Tan. NativeGuard: Protecting Android applications from third-party native libraries. WiSec, 2014.
[4] E. Athanasopoulos, V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis. NaClDroid: Native code isolation for android applications. ESORICS, 2016.
[5] J. Seo, D. Kim, D. Cho, T. Kim, I. Shin, and X. Jiang. FlexDroid: Enforcing In-App Privilege Separation in Android. NDSS, 2016.
[6] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash. FlowFence: Practical data protection for emerging IoT application frameworks. USENIX Security, 2016.
[7] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernan- des, Z. M. Mao, and A. Prakash. ContexloT: Towards providing contextual integrity to appified IoT platforms. NDSS, 2017.

Approach
Provide an access control framework at the granularity of libraries
(intra-process) that dynamically adjust privilege based on the execution context.

Native Code Isolation Mechanism:
● Isolate native third-party libraries into their own memory address space

⇒ Prevent native libraries from manipulating a thread's call stack info
● Runtime detects calls to third-party native libraries and runs each in a

separate process

Written in Python 18.0%

Have native dependencies 76.0%

Vulnerability Class # of Reports

Data Leak 15

Arbitrary Code Execution 12

Symlink Attack 5

Run external binaries 40.0%

Use ctypes FFI 40.0%

Table 1: Library implementation language. Table 2: Used dynamic language features.

Table 3: Top 3 Python library vulnerabilities out of 48
analyzed CVE database reports We identified 35

distinct vulnerable Python libraries.

Stack Inspection:
● Reference monitor intercepts relevant

syscalls and pauses the corresponding
app thread

● Stack Tracer thread in runtime collects
paused thread’s call stack info
⇒ pass to reference monitor through a
secure comm. channel

Access Control Semantics:
● Ref. monitor makes access decisions

on a per-thread basis
● Developer specifies initial permissions

of top-level libraries
● Lower-level modules “inherit” the

permissions of the closest known caller
module at runtime

● System calls are allowed/denied based
on the resulting permissions of all
libraries in the call stack (i.e. the
provenance of the syscall)

main
application

camlib.capture()

socket.connect(“evil.com”)

main
application

camlib.capture()

libmmal.so

fopen(“/dev/video0”, “rb”)

Developer policy:
camlib CAMERA_READ
requests NETWORK_SEND “mycloud.com”

Fig. 1: High-level System Architecture.

Fig. 2: Two sample call stacks. The developer’s
policy permits the syscall in the left call stack,
but denies the network connection from the

camera library.

