
CONIKS: Preserving Secure

Communication with Untrusted Identity

Providers

Marcela S. Melara

Master’s Thesis

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Master of Science in Engineering

Recommended for Acceptance

by the Department of Computer Science

Princeton University

Adviser: Edward W. Felten

June 2014

c© Copyright by Marcela S. Melara, 2014.

All rights reserved.

Abstract

As a foundation for securing Internet communication, today’s public-key infrastruc-

tures attempt to certify that the “correct” principal owns a name and possesses a

corresponding public key. Yet these assertions are not machine-verifiable, and their

correctness can be and has been broken by error, malice, or external (and sometimes

legal) coercion. Rather than focus on the “correctness” of name ownership, we argue

that ensuring the continuity of that ownership, as defined by the binding of a name

to a public key, is necessary and often sufficient for secure communication.

To this end, we have designed CONIKS, a key management system that ensures

online identity providers maintain and respond with valid bindings from names to

cryptographic keys, even without users managing (or seeing) those keys. If providers

disseminate invalid bindings or equivocate by presenting different bindings to different

users, parties quickly detect this misbehavior and can publish irrefutable proof of this

equivocation. The cryptographic mechanisms employed by CONIKS are highly effi-

cient, supporting an Internet environment of millions of providers, any of which may

have users in the billions. ConiksChat, our secure chat service prototype integrates

CONIKS into an existing chat application and demonstrates that one can achieve

high usability while preserving the security and privacy of online communications.

iii

Acknowledgements

First of all, I would like to thank Ed Felten and Mike Freedman for co-advising me

on this project. They gave me the support and advice I needed to gain an intuition

for computer security and systems research, and I could have not gotten ready for a

PhD without their education and care. I hope these next several years at Princeton

will be as enlightening and fruitful as the my first two years.

I would also like to thank Aaron Blankstein for being a great collaborator and

mentor on this project. All of his insight on the problems we worked to solve, but also

in general on the ins and outs of conducting research were extremely helpful. I really

appreciate his willingness to hear me out whenever I had questions or concerns. I

would also like to thank Josh Kroll for his guidance on the prototype implementation

of CONIKS. His continuing support of this project was very helpful in getting the

project to where it is today.

Of course, I also have to thank all of my Hobart and William Smith Professors for

realizing that I would want to take the research route before I did. I am grateful for

their unbounded encouragement and guidance towards where I am today. I remember

all of our conversations about school and life very fondly.

Most importantly, I am grateful for all of my family and friends. My parents and

sister are always there when I need a pep-talk, advice or just a place to vent. All of

my CITP, Princeton, HWS and Erding friends have been invaluable to keeping me

grounded and giving me reasons to laugh when things get most stressful. And I would

like to thank Wade for his support, understanding and love. I am happy to have him

in my life, and I owe my sanity to him. I look forward to facing the challenges of the

next few years together.

iv

Contents

Abstract . iii

Acknowledgements . iv

List of Figures . viii

1 Introduction 1

1.1 A Different Approach to Identity: Continuity 2

1.2 Continuity vs. Correctness . 4

2 Related Work 6

2.1 Certificate Transparency . 6

2.2 Keybase . 8

2.3 OneName . 9

2.4 Certificate Validation Systems . 10

2.5 Identity Services and Authentication Systems 11

2.6 Alternative Public-Key Infrastructures 12

2.7 Untrusted Cloud Services . 13

3 CONIKS Overview 14

3.1 Threat Model . 16

3.1.1 Identity Provider . 16

3.1.2 Clients . 17

3.1.3 Third-party entities . 17

v

3.2 CONIKS Properties . 18

3.2.1 Whistleblowing . 18

3.3 Enabling Continuity Checks . 19

3.4 Applications . 20

3.4.1 Secure Webmail . 20

3.4.2 Secure Communications . 21

3.4.3 Secure Credentials . 21

3.4.4 Adopting CONIKS in practice 22

4 System Design 24

4.1 Making Bindings Verifiable . 26

4.1.1 Committing to a Merkle Search Tree 26

4.1.2 Comparable Commitments . 27

4.1.3 Associating Commitments over Time 27

4.2 Continuity Checks . 28

4.2.1 Checking for Commitment Non-Equivocation 28

4.2.2 Checking for Binding Validity 29

4.2.3 Performing Checks after Missing Epochs 30

4.3 Whistleblowing . 31

5 Security Analysis 33

5.1 Detecting Equivocation . 33

5.2 Ensuring Validity . 36

5.3 Limiting the Effects of Denied Service 37

6 Discussion 38

6.1 Scaling CONIKS . 38

6.1.1 Computing and Transmitting Commitments 38

6.1.2 Commitment Verification . 39

vi

6.1.3 Distributed Operation by Identity Providers. 39

6.2 Caching Key Information . 40

6.3 Key Loss and Account Protection . 40

6.4 Protocol Extensions . 41

6.4.1 Concealing the Number of Users 41

6.4.2 Returning Updated Bindings between Epochs 41

7 Prototype Implementation 43

7.1 Background: XMPP, OTR and Tigase 43

7.1.1 XMPP . 43

7.1.2 Off-the-Record Messaging . 44

7.1.3 Tigase XMPP/Jabber Server 45

7.2 ConiksChat Implementation Details 45

7.2.1 ConiksChat Service . 45

7.2.2 ConiksChat Client . 47

7.2.3 CONIKS Protocol Buffers . 49

7.2.4 Preliminary Evaluation and Discussion 49

8 Conclusion 51

Bibliography 53

vii

List of Figures

3.1 User-provider interactions during secure communication. 15

4.1 User-provider interactions during Continuity Checks. 25

4.2 An authentication path in a namespace tree. 26

4.3 A hash chain of commitments. 27

4.4 Flow chart of the hash chain verification. 28

4.5 Flow chart of the witnessed commitments check. 28

4.6 Flow chart of the binding validity check. 29

5.1 Probability of two users detecting an equivocation. 35

viii

Chapter 1

Introduction

Today, billions of users depend on online services to communicate with each other.

Rather than running their own servers, users rely on these providers for their ease

of use, global accessibility, and high availability. Yet recent revelations about sys-

tem penetrations by outside attackers [26, 28], and mass online surveillance and data

collection by government agencies [11, 20, 24] are a reminder that these centralized

services are high-value targets for attack. While many services have taken a step to-

wards securing their communication channels via encrypted HTTP and SMTP, users’

data is typically stored unencrypted on the providers’ servers, leaving the private mes-

sages vulnerable to security breaches [14, 41]. Even if providers confronted external

attacks with heightened security mechanisms, these do not address insider attacks

or coercion by governments or others. Users face a choice between the risks of cen-

tralized systems, and the challenges of running their own servers. A better approach

would take advantage of centralized services while mitigating the risks of outsider and

insider access to data.

In principle, users can mitigate these risks by adopting end-to-end encryption and

authentication tools such as PGP [12, 68, 51]. These tools, however, require that

users explicitly reason about cryptographic keys and encryption. For many users,

1

these concepts can be error-prone and difficult to adopt [18, 67]. In the decentralized

“Web of Trust” model, a transitive chain of trust must be found between the two

communicating entities. On the other hand, the traditional certificate authority (CA)

model assumes that there exist universally trusted parties and that these parties can

somehow verify the identity of users at low cost. Neither approach copes well with

attacks that coerce a certifier into issuing a bogus certificate allowing the attacker to

impersonate a targeted user and launch a man-in-the-middle attack.

1.1 A Different Approach to Identity: Continuity

Since certifiers are still capable of comprising the integrity and confidentiality of secure

communication in the Web of Trust and the CA models, we propose to address this

problem by changing what is required of a certifier. Rather than requiring that

the binding of a key to a name be correct in the sense that the key belongs to the

particular real-world person or entity designated by the name, a certifier should only

attest that the binding is continuous. To achieve continuity of identity, we identify

two properties that key management systems must provide. First, we require non-

equivocation: we divide time into epochs and require that a provider never present

more than one binding for a name within an epoch. Second, we require validity : the

key bound to a name in an epoch must be the same key as in the previous epoch,

unless there has been a key change signed by the previous key or the name has been

revoked by the user. Taken together, these properties guarantee that there will never

be disagreement about which key controls a name at a given time, and that control

of a name cannot change unexpectedly.

While some other systems allow equivocation about server certificates to be de-

tected in principle (e.g., [33, 48, 61]), no existing identity solutions provide explicit

detection of these properties in an end user-specific PKI. To this end, we have designed

2

CONIKS (CONtinuous Identity and Key management System), a system that enables

ubiquitous secure communication as well as secure credentials, without users needing

to worry about (or even see) cryptographic keys. CONIKS does so by requiring online

identity providers to maintain continuous bindings of names to keys. This prevents

compelled certificate attacks because any attempt by the provider to associate a new

key with an existing name would require a violation of either non-equivocation or

validity. CONIKS provides two mechanisms for users to verify these properties, and

which guarantee that any violation of either property will be detected promptly and

with high probability. Because these mechanisms capture non-repudiable evidence of

any violation, users and providers can “whistleblow” on a misbehaving provider by

publishing this proof.

In order to achieve scalability, CONIKS requires each participant to perform a

relatively modest number of continuity checks on cryptographic commitments made

by providers. These distributed checks work together to guarantee that any equiv-

ocation or invalidity will be detected promptly with high probability. As a result,

any user can be confident that the binding she is seeing for a name is consistent with

what another user would see at any point in time.

Through analysis of CONIKS’s continuity checks, we find that two users attempt-

ing to communicate are capable of detecting equivocation with only one honest iden-

tity provider in the system. Our evaluation of CONIKS’s scalability demonstrates

that CONIKS remains highly efficient with millions of providers and billions of users.

We have implemented a prototype secure chat service and client which integrate

CONIKS for key management.

3

1.2 Continuity vs. Correctness

In presenting CONIKS, we make the case that continuity of a name-to-key binding

is both more achievable and more useful than the correctness of the binding. First,

continuity is easier to achieve. Correctness requires that control of a name corresponds

to some real-world notion of accurate naming, which will be difficult to check at

reasonable cost in practice. Indeed, individuals have exploited this difficulty to obtain

fraudulent certificates for large companies from major CAs [53, 54]. By contrast,

continuity can be checked efficiently and automatically. An identity provider can

subvert correctness either by error or due to coercion, but failures of continuity will

always be detectable, and proof of a continuity failure cannot be repudiated.

Second, at least for the case of identifying end users, continuity is a better match

for users’ intuitive expectations about naming. Users typically associate an online

name with a person and expect that control of the name will not change unexpect-

edly. Name discovery in CONIKS follows the same conventions that are already in

place. With respect to name ownership, there is no a priori correct answer to the

question of who should control the name bob@example.com. What users really expect

is continuity. Many of the difficulties of certificate-based identification of users happen

because we are trying to use a correctness-motivated design to achieve a continuity

property.

Third, because checking and verification of continuity can be automated, users

have no need to worry about key management. When a user registers a new account,

the user’s client software can generate a corresponding key-pair, upload the public key

to the identity provider, and wait for the provider to publish a binding connecting the

name to the public key. Once this has happened, the user can have confidence that

everyone will see her as controlling the name, and that she will continue to control

the registered name. The user’s control of the name can then be communicated in the

same way that names are disseminated now, through a combination of out-of-band

4

communication and word-of-mouth through third parties. In a continuity-based sys-

tem, if Alice securely emails Charlie and says that Bob’s address is bob@example.com,

Charlie can record and use this address. This matches Charlie’s intuition in the cur-

rent (insecure) system, in which he treats Alice’s statement about Bob’s ownership of

a name as valid if he trusts Alice. Users can talk about who controls which name—as

they do now—and CONIKS will prevent inconsistent views and unexpected transfers

of control.

5

Chapter 2

Related Work

Three recent projects in the areas of certificate validation and identity services are

especially similar to CONIKS, and have helped us to further define some aspects

of our design for CONIKS. More generally, we draw techniques from four major ar-

eas of research: Certificate Validation Systems, Identity Services and Authentication

Systems, Alternative Public- Key Infrastructures, and Untrusted Cloud Services,

2.1 Certificate Transparency

A number of projects have proposed systems and protocols for validating SSL/TLS

certificates and for making certificate authorities (CAs) accountable for their activity.

Certificate Transparency (CT) [32, 33] publicly logs the existence of TLS certificates

as they are issued or observed, such that anyone can notice the issuance of suspicious

certificates as well as audit the certificate logs themselves. Log services implement

the protocol and handle new certificate submissions and queries.

Certificate Transparency’s goal is to mitigate the problem of mis-issued certificates

by providing append-only untrusted logs of issued certificates. To provide evidence

that a certificate has been submitted to a log, the service returns a signed timestamp.

CT uses Merkle trees [37] for efficient auditing and to avoid placing trust in the log

6

servers. Certificates are stored in chronological order in the leaf nodes of the tree.

Thus, log servers can provide two kinds of cryptographic proofs. First, they can show

that any particular version of the log is an extension of any given previous version.

Second, they can show that a particular certificate is present in the tree.

Since Certificate Transparency does not deal with certificate revocation, a few

extensions have been proposed to tackle this issue. Revocation Transparency [31] is

an informal proposal which describes two mechanisms to prove non-revocation of a

certificate in a CT log. These mechanisms used on top of conventional CT, however,

would make the protocol much less efficient due to a large amount of additional

computation per certificate.

Certificate Issuance and Revocation Transparency (CIRT) [61] seeks to solve the

inefficiencies of Revocation Transparency. This CT extension requires log servers to

generate two Merkle trees. One serves as the append-only database of certificates

as in CT. Revocation of a certificate is signified by adding a null key for the cer-

tificate subject. To efficiently prove that a certificate is current, i.e., present in the

log and unrevoked, CIRT uses a second Merkle tree which organizes the certificates

in lexicographic order. Additionally, CIRT proposes a protocol for transparent key

management for end-to-end secure email. In particular, users issue public-key certifi-

cates with a CA, subscribe to a certificate prover which maintains a CIRT log, while

keeping their existing email address with their email provider; in practice, these three

entities could also be represented by a single service provider. In any case, the idea

is that users’ client software will transparently interact with the CIRT log, avoiding

to have to trust any service provider.

CONIKS employs techniques very similar to Certificate Transparency and its ex-

tensions, with the added inclusion of explicit handling of equivocation in an efficient

manner. CT and CIRT recognize equivocation about certificates by log servers sug-

gesting the use of gossip protocols for clients and auditors to disseminate and compare

7

Merkle tree root hashes of logs. However, these solutions treat equivocation detection

as a separate, external mechanism, and such gossip protocols are thus not part of the

CT and CIRT protocols. Furthermore, because we seek to devise a key management

system specifically designed for end-users we deem the continuity of identity model

to be a more adequate match for users’ intuitions about online identity, as we discuss

in §1.2. Therefore, although CIRT’s and CONIKS’s key management protocols have

a similar goal, the concepts of identity providers and continuity are more intuitive to

users.

2.2 Keybase

A myriad of online identity and authentication services have been developed for var-

ious purposes. With the recent increase in demand for end-to-end encrypted com-

munication and authentication, the recently-announced Keybase [29] system is a new

way for users to authenticate each other across online services by providing a public

directory of publicly-auditable name-to-key bindings.

In Keybase, a user Alice registers a name-to-public key binding, as well as account

information from one or more third-party services she controls (e.g., Twitter and

Github). Upon registration, Alice digitally signs a tweet and gist confirming the

binding between her Keybase identity and her Twitter and Github accounts. When

Bob requests Alice’s name, whom he knows from Twitter and Github, his Keybase

client checks that Alice’s listed third-party usernames, belong to the same principal

by verifying that the same key was used to generate signatures across her third-party

accounts.

Thus, Keybase takes advantage of public identities, and online relationships and

reputation, to provide users with secure credentials that can be used across online

services. This requires that the two communicating parties in the Keybase model

8

must both trust common third-party providers, as well as the Keybase client. While

this system is very intuitive to users, it does not address the problem of server equiv-

ocation. For instance, if Keybase colludes with Twitter, Keybase could generate a

bogus key pair for a user, issue the signed tweet, and Twitter could post it on the

victim’s feed and select whom to show the tweet with the bogus signature.1

As we discuss in §3.4, CONIKS can also be used for secure credentials but without

requiring users to place any trust in common third-parties. Due to the system’s conti-

nuity properties, any equivocation about an online identity by the identity providers

or the third-party service providers will be quickly detected with high probability.

Thus, CONIKS would not be susceptible to attacks by malicious identity providers.

2.3 OneName

Originally designed as a decentralized DNS based on the Bitcoin software, Namecoin

[38, 39, 43] supports name registrations, updates and transfers. This makes Namecoin

a versatile cryptocurrency that can be used for various other applications including

identity systems and messaging systems. In order to register a name, users pay a small

amount of Namecoin. The recently-announced OneName [5] service leverages Name-

coin to provide a public user directory made of entries in the Namecoin blockchain.

Like Keybase, OneName also seeks to provide users with secure credentials to con-

solidate their online presence at a single account.

In OneName, users register unique global usernames and store their name-to-key

bindings in the Namecoin blockchain. Like Bitcoin, Namecoin is a peer-to-peer system

and the blockchain grows after each new change in the namespace, which means that

the inclusion of a OneName identity in the Namecoin blockchain is distributed to all

peers, and verifies that the name registration is authentic. Once in the blockchain,

anyone can easily look up a OneName username and obtain the associated public

1Such selective presentation of messages has been reported on other social networking sites. [60]

9

key. Since OneName users can link their name-to-key bindings to accounts with

third-party services, users can authenticate each other across online services, much

as in Keybase.

Because OneName is a decentralized identity system, users do not have to worry

about dealing with certificate authorities or identity providers, which are potentially

malicious. On the other hand, the reliance on the peer-to-peer system for confirming

name registrations on the blockchain has led to impersonations [49], i.e., two users

register the same username but because only one registration is accepted due to the

contention to be included in the longer branch of the blockchain, only one user will

control this username. Because OneName does not currently provide a mechanism

for users to verify that they truly control the name-to-key binding they register, such

contention is not discovered until after-the-fact, and potentially malicious users can

exploit this conflict.

Impersonation attacks like the ones on OneName may only occur at a local scale

in CONIKS since identity providers manage local namespaces and register new name-

to-key bindings in batches, but we propose a solution to this issue by the mechanism

described in §6.4.2. At the same time, CONIKS is a distributed key management

system and leverages this decentralization to detect equivocation about online identi-

ties (see §3.3). This enables CONIKS to provide unified online accounts that do not

require users to trust their identity providers, as in OneName, but with the added

benefits of centralization, which is simpler and requires less of users to join the system.

2.4 Certificate Validation Systems

As mentioned briefly above, one significant research trend has sought to fix some prob-

lems with the Certificate Authority (CA) model through certificate validation sys-

tems, which aim to reduce the trust in any single CA. Like Certificate Transparency,

10

Sovereign Keys [47] is another certificate log server. The other main trend in this line

of work are certificate observatories such as Perspectives [66],Convergence [58], and

SSL Observatory [48].

Certificate observatories create a public repository of SSL/TLS certificates and

enable browsers to compare the key they have received with what a small number

of trusted observatory servers have witnessed. The Accountable Key Infrastructure

(AKI) [27] combines these the techniques used in certificate observatories and log

servers to create a certificate validation system which focuses on providing key revo-

cation and accountability.

These approaches all aim to make the certificates of well-known domain names

verifiable, and these approaches allow clients to detect equivocation about certificates

in principle. CONIKS employs similar techniques as this line of work to provide built-

in mechanisms for users to actively and rapidly detect insider attacks, thus focusing

on creating a usable PKI for end-user communications.

2.5 Identity Services and Authentication Systems

Before Keybase and OneName, several other projects have sought to provide secure

credentials that allow users to consolidate multiple online accounts. The authen-

tication standard OpenID [55] allows a user to create an account with an OpenID

identity provider, and then use this account to authenticate themselves to any third-

party website that accepts OpenID. This enables single sign-on [65]: a user can access

multiple, independent systems without requiring them to log in again at each one.

A myriad of identity services [42, 50, 52, 56] have been built on top of OpenID,

the OpenStack Identity API [57], or the OAuth standard [40]. These services offer

a method for creating, managing, and authenticating user identities, but they are

11

typically intended for a specific application or platform [42, 56] or provide tools for

developers and businesses to become identity providers [50, 52].

CONIKS is designed in the same spirit as OpenID as it explicitly separates the

roles of identity and service providers. However, all of these services remain suscep-

tible to malicious insider attacks.

2.6 Alternative Public-Key Infrastructures

It is well-established that neither the traditional CA model nor the decentralized

“Web of Trust” model are perfect solutions to binding certification. Towards this

end, PKIs alternative to the traditional X.509 model [25] have been proposed. As

a key example, the SPKI/SDSI model [13] emphasizes naming, groups, and flexible

authorization. SPKI/SDSI supports disjoint per-provider namespaces and does not

give specific semantics to the name bindings, and it exposes the management question

of choosing trusted authorities to end-users. Additionally, much like most other PKIs,

SPKI/SDSI does not address the security threat of malicious or coerced providers.

SFS [36] introduced the concept of self-certifying names: by containing the pub-

lic key itself (or a hash thereof), a name can separate the issue of key management

from the system security. This concept has been widely applied, from network file

systems [36] to Internet addressing [8]. Self-certifying names do not require an ex-

ternal key management infrastructure to certify name-to-key bindings, which is ideal

in the face of untrusted communication providers. However, self-certifying names

are not human-readable, and do not solve the problem of (securely) discovering and

disseminating names in the first place.

CONIKS supports disjoint per-provider namespaces and does not give specific

semantics to the name bindings like SPKI/SDSI, but because CONIKS is designed

to realize the continuity of identity model, it obviates the need for users to make

12

choices about which authorities to entrust their public keys as these can be held

accountable for their misbehavior. Furthermore, while CONIKS cannot avoid relying

on an external key management infrastructure, names remain human-readable, and

users can securely discover and disseminate secure online identities as these are always

verifiable.

2.7 Untrusted Cloud Services

Cloud services are increasingly popular for their ubiquitous accessibility and ease-

of-use. However, these cloud services may misbehave or be compelled to equivocate

about the content they serve, violating their users’ security or privacy expectations.

Four recent systems—SUNDR [34], Depot [35], SPORC [16], and Frientegrity [15]–

provide explicit mechanisms to detect server equivocation.

These systems either do not explicitly support encrypted content [34, 35], or they

assume that an end-user PKI already exists [16, 15]. Furthermore, these systems

involve a single, self-contained cloud provider. CONIKS uses similar techniques to

make equivocation detectable through tamper-evident data structures, yet applies

these techniques to protect the integrity of name-to-key bindings in order to establish

a secure, end-user PKI for secure communication. CONIKS also supports a more com-

plex ecosystem that involves federated providers, with potentially interacting users,

and where the (mis)behavior of any provider could affect any member of the system.

13

Chapter 3

CONIKS Overview

Secure email is currently cumbersome since users do not know a priori each other’s

public keys. Instead, standard tools require them to manage and reason about keys,

leading to unintentional key leaks and other errors [67]. It is a widely recognized goal

to automate key management so that users do not have to worry about it, and cannot

do it wrong, but this has not proven possible in conventional PKIs.

In CONIKS users should never have to see encryption keys. CONIKS offers trans-

parent key management enabling secure communication in these simple steps, as

shown in Figure 3.1:

1. Alice registers the name alice with foo.com. In doing so, her client generates a

public key that it sends to foo.com. foo.com publishes a binding that connects

the name alice@foo.com to Alice’s public key, and Alice’s client verifies that

foo.com has done this.

2. When Bob attempts to email alice@foo.com, his client looks up the correspond-

ing public key at foo.com; this will be Alice’s public key.

3. Bob encrypts his message to Alice, signing with his own private key associated

with bob@bar.com.

14

Register
(name,PKA)

Look up Alice’s
PKA

Send message encrypted to PKA , signed by SKB

Provider
foo.com

User
Alice

Provider
bar.com

User
Bob

.

. .

Look up Bob’s PKB, verify
signature, decrypt using SKA

1

2

4

3

Figure 3.1: High-level interactions between users and identity providers when two users
want to communicate securely in CONIKS.

4. Once Alice receives the Bob’s message, her client looks up his public key at

bar.com, verifies the signature on the message, and decrypts the message.

For this to work seamlessly and securely, Alice and Bob must have confidence that

the binding that is seen by Bob’s client when it looks up the binding for alice@foo.com

will be consistent with what Alice’s client saw when she registered the name. However,

this can fail to occur in the two following ways: either foo.com can equivocate by

giving different bindings to Alice and Bob’s clients, or foo.com can make an invalid

change to the key between the time when Alice’s client looks up the name and the

later time when Bob’s client looks it up.

To guarantee that either type of misbehavior can be detected, CONIKS relies on a

set of verifications. Equivocation is detected by having participants randomly query a

few providers and compare the answers they receive. Rather than checking individual

bindings, this check compares the root hash of a specialized Merkle tree [37] published

by each provider. Invalidity is detected by having each user (or an agent acting on

the user’s behalf) look up its own binding in each epoch. It is sufficient to have a

name checked by a single user, because non-equivocation guarantees that any other

user who did the same check would see the same result. We detail the checks in §4.2.

15

3.1 Threat Model

CONIKS’s security model reasons about three types of principals: identity providers,

users, and third-party entities. We make standard assumptions about the security of

cryptographic primitives.

3.1.1 Identity Provider

Identity providers manage disjoint namespaces in which the name-to-key bindings

reside. We assume providers use a separate trusted PKI (e.g., X.509) to create non-

repudiable statements about the bindings they publish.

An identity provider may be actively malicious or coerced by an outside party to

publish arbitrary bindings in response to requests, or to monitor and manipulate the

secure communications between specific users. An identity provider cannot defeat

cryptographic primitives, but it can learn which users are communicating with each

other.

A malicious identity provider might try to violate the confidentiality or integrity

of user communications by disseminating a binding that links a user’s name to a key

controlled by the identity provider. For example, provider foo.com could present a

client the correct name-to-key binding for the user Alice (alice, PKA), while present-

ing (alice, PK ′A) to a user Bob’s client, where PK ′A is a public key which foo.com

controls. In this scenario, any communication from Bob to Alice will use PK ′A, al-

lowing the malicious provider to decrypt confidential messages and forge replies.

A malicious provider also may choose not to respond to client queries. Such an

availability attack may seek to circumvent detection and verification schemes. We

detail the consequences of this behavior in §5.3.

In practice, we expect that CONIKS will deter identity providers from equivocat-

ing about their users’ bindings since the continuity checks guarantee detection with

16

high probability (see §5.1). Thus, providers will want to avoid the loss of reputation

and business resulting from being caught misbehaving. This consideration of how

adversaries will avoid malicious behavior in light of their probability of being de-

tected also appears in the literature introducing the BAR [7] and covert [9] adversary

models.

3.1.2 Clients

Users run CONIKS client software, which they may run on multiple trusted devices.1

To support continuity checks, we assume that at least one of a user’s clients has access

to a reasonably accurate clock as well as access to secure local storage in which the

client can save timestamped information about prior checks. We assume that clients

may be unable to communicate directly with each other.

3.1.3 Third-party entities

Entities such as government agencies or third-party adversaries may attempt to gain

control over a users’ networks or software to mount an active or passive attack on

the secure communications between specific users. Recent leaks to the public about

government surveillance and collection of user communications data world-wide [11,

20, 24] have revealed that, under the USA PATRIOT Act [6], the FBI can send

National Security Letters (NSLs) to communications providers whenever is needs to

secretly demand data about American citizens’ private communications and Internet

activity. NSLs can be sent without oversight or prior judicial review [46, 44, 19], and

recipients of NSLs are subject to a gag order which forbids them to reveal the letters’

existence.

Thus, the receipt of a NSL is a coercion of a identity provider by the government to

equivocate about some or all name-to-key bindings. Since the identity provider is the

1We use the terms “user” and “client” interchangeably in this thesis.

17

entity actually mounting the attack, a user of CONIKS has no way of technologically

differentiating between a malicious insider attack mounted by the provider itself and

this coerced attack [17]. Nevertheless, because of the continuity checks CONIKS

provides, users could expose such attacks as long as there is one identity provider

which is not colluding or being compelled (see §5), and thereby mitigate their effect.

3.2 CONIKS Properties

CONIKS enforces the following two properties of name-to-key bindings to provide

continuity of identity:

1. Non-Equivocation. With respect to a particular epoch, an identity provider

must always present the identical name-to-key binding to all users and providers.

2. Validity. If a name is bound to key PK in some epoch, then in the next

epoch either (a) the name is bound to PK again, or (b) the name is bound to

another key PK ′ and a statement authorizing the change and signed by PK is

provided, or (c) the name is revoked, and an authorizing statement signed by

PK is provided.

To verify these properties, CONIKS provides checks for users and providers to

detect violations of continuity. A name-to-key binding is continuous if it passes these

continuity checks.

3.2.1 Whistleblowing

If provider misbehavior is detected, CONIKS provides a means for clients to “whistle-

blow”: to report and publish the evidence of the violation for all identity providers

and clients in the system to see. Because providers sign the results they provide,

the evidence of the violation will be signed by the provider who is at fault. Not only

does whistleblowing alert clients of provider misbehavior, but the absence of a whistle

18

message is a source of confidence that a provider is being compliant. For instance, if

no whistle messages have been reported for Alice’s name-to-key binding after a long

period of time, Bob can be confident that Alice’s identity provider has followed the

rules with respect to Alice’s name.

3.3 Enabling Continuity Checks

A naive approach to verifying an identity provider’s compliance would have each

client perform a separate continuity check on each name in the provider’s namespace.

To avoid the obvious scaling problems with this approach, CONIKS instead has each

provider create a Merkle tree containing all of its binding such that non-equivocation

checks can be performed over the root of the tree (more details in §4.1). To bind

providers to the current state of their entire mapped namespace at a specific point in

time, CONIKS requires identity providers to generate cryptographic commitments to

these snapshots at regular time intervals, or epochs, by digitally signing the hash of the

namespace tree’s root node. Due to the properties of Merkle trees, non-equivocation

for the root implies non-equivocation for every binding in the tree.

This structure allows us to define CONIKS’s continuity properties more precisely:

1. Non-equivocation about Commitments. An identity provider must

present the identical commitment for an epoch to all users and providers

regardless of when they make the request.

2. Validity of Bindings. An identity provider must return either the same public

key, or information indicating a valid change or revocation, as well as a proof

that the name-to-key binding is part of its namespace Merkle tree.

Therefore, clients need only check the validity of those bindings of interest to

them, as non-equivocation about the commitments implies that the provider has

not equivocated about any bindings. To this end, in a naive approach, clients and

19

providers would exchange and compare each commitment they see for some specific

provider at time t. For example, Alice would send foo.com’s commitment in epoch

t to Bob, and would waits to receive Bob’s version of foo.com’s commitment at t.

At the same time, Bob would exchange bar.com’s commitment with Charlie. This

all-pairs communication at each epoch makes the check for non-equivocation quite

burdensome; the number of commitment comparisons is on the order of O(P · N2),

where P is the number of providers publishing commitments and N is the total

number of clients. To further simplify this check, CONIKS requires that identity

providers distribute their commitments to other providers and perform part of the

non-equivocation check. Clients then do not need to exchange commitments with

other clients, but can merely compare their commitments with what providers are

witnessing from others.

In practice, we expect well-behaved identity providers will be willing to perform

these checks on behalf of their users as a means to help protect them against other po-

tentially malicious providers. Even today, providers are willing to protect their users’

privacy by adopting privacy-enhancing technologies [45], e.g., encrypted SMTP.

3.4 Applications

Our work is motivated by three main applications for CONIKS: Secure webmail,

secure online communications, and the secure association of many online identities.

3.4.1 Secure Webmail

CONIKS could be easily integrated into the current user model of webmail services,

enabling usable secure webmail backed by continuous email identities. Since each

email provider has a unique namespace, webmail providers could act as CONIKS

service providers, requiring them to manage the name-to-key mappings for their users,

20

and to incorporate the CONIKS API and protocols in their services. CONIKS also

fits well into notion of email identities that users have: users may have distinct email

addresses for different purposes and thus distinct online identities, so CONIKS would

allow them to maintain this notion while offering verifiable security. Furthermore,

users can notify contacts about their CONIKS identities via the same well-established

out-of-band means that are used to announce email addresses, e.g., posting on a blog

or handing out business cards.

3.4.2 Secure Communications

While secure webmail is a particularly suitable application of CONIKS, our work is

more broadly applicable to any form of online communication which requires users

to have a registered name. Online communications span many more forms than just

email: instant messaging, social networks, chat rooms, blogs, and even websites. As is

the case with secure webmail, prior approaches to secure instant messaging (e.g., Off-

the-Record Messaging [10]) and Facebook chat [21] have devised ways of encrypting

the messages, but they delegate key management to the users so that they do not have

to entrust their data to the communications providers. More importantly, however, is

the fact that the notion of continuity of identities remains an unessential or ignored

component of such forms of communication online, even in the face of adversaries who

are known to equivocate about posts and authorship to surveil or censor users (e.g.,

[60]). Such communications systems could leverage CONIKS to provide verifiable

name-to-key bindings for encrypting or authenticating any messages or published

content protecting their users against such attacks.

3.4.3 Secure Credentials

So far we have discussed CONIKS as a system for providing verifiable name-to-key

bindings for ensuring webmail and other online communications. However, CONIKS

21

could also allow users to have secure credentials for various existing online accounts

they already own, consolidating them using a single online identity that is compatible

across communication providers. For example, the idea is that Alice, who owns both

a Twitter account (@alice) and a Gmail account(alice@gmail.com), could digitally

sign all of her tweets and emails she sends from her Gmail address using her CONIKS

credentials. At the same time, users could verify that the email they are receiving

from alice@gmail.com comes from the same online identity which tweets under @alice.

Thus, CONIKS would provide a means for users to learn which other online accounts

are associated with a specific secure online identity, and they could verify the conti-

nuity of this identity using the same credentials across services. More importantly,

users could use their CONIKS credentials to gain single-sign on [65] access to all of

the various accounts associated with a specific online identity.

3.4.4 Adopting CONIKS in practice

We envision two different ways in which developers can integrate CONIKS in the

current workflow of communications applications. First, communication providers

could themselves become identity providers. In a sense, these providers are already

responsible for registering and managing names. Furthermore, users already have

the notion of online identities which gain reputation over time. Thus, application

developers could integrate CONIKS into their service or create application-specific

plug-ins that implement the CONIKS protocols. For instance, developers could create

a CONIKS plug-in for a popular email client that transparently allows users to man-

age name-to-key bindings, performs the necessary validity checks, and incorporates

the functionality of existing encryption tools. Second, CONIKS enables creation of

“stand-alone” verification services. These services can provide clients that have the

same functionality as the application-specific CONIKS plug-ins.

22

While CONIKS does not require users to interact or manage their contacts’ keys,

clients must have access to their own private keys. While some implementations of

CONIKS clients may expose this directly to users, providers could also support storage

of private keys using password-based encryption ([63]). While this makes managing

multiple devices easier, it would carry with it the usual trade-offs of password-based

encryption schemes. Because of this, CONIKS does not prescribe a specific solution

for private key management, and instead leaves this as an implementation choice.

23

Chapter 4

System Design

Because identity providers may not be truthful about the public keys they report to

different users, CONIKS offers two main mechanisms for users and providers to check

non-equivocation about commitments and the validity of bindings. When performed

every epoch, these checks ensure the integrity of secure communication. At a high

level, these mechanisms include the following steps (summarized in Figure 4.1):

1. Alice registers her name alice with her identity provider foo.com to establish a

continuous online identity.

2. At the beginning of the next epoch t, foo.com takes a new snapshot of its

namespace tree, and generates the signed commitment.

3. Provider foo.com publishes this new commitment to all other providers in the

system.

4. Upon receiving foo.com’s new commitment, provider bar.com checks foo.com’s

commitment history to verify that foo.com has not changed the history that

bar.com has witnessed so far.

5. Alice checks the continuity of her binding in three steps:

(a) She requests foo.com’s newest commitment to check foo.com’s commitment

history.

24

Provider
bar.com

Generate & commit to snapshot

Publish commitment

Verify comm. history

Check (name,PKA)
validity

Check bar.com sees
identical commitment

Register
(name,PKA)

5b

Look up Alice’s PK:
equiv. to 5a,c

Send message encrypted to PKA , signed by SKB

Get foo.com’s
commitment:
equiv. to 5b

Provider
foo.com

User
Alice

User
Bob

.

. .

7

5a1

5c

2

3

6a

6b

4

Check comm. history

Figure 4.1: Interactions between users and identity providers when performing the conti-
nuity checks in CONIKS.

(b) She queries one or more random providers (bar.com in this example) for

the commitment it witnessed from foo.com at the beginning of the epoch.

This check is looking for evidence that foo.com has equivocated about its

new commitment.

(c) She looks up her binding from foo.com to check the validity of her binding.

6. Now, Bob, as user of bar.com, wants to email alice@foo.com. He looks up Alice’s

public key at foo.com and performs the same verifications as Alice in step 5.

7. If Bob detects no misbehavior, he encrypts his message to Alice, and signs it

with his private key from bar.com. We assume Bob has also verified his own

binding in this epoch per step 5.

8. Once Alice receives the message from bob@bar.com, she looks up his public key

at bar.com and checks the key’s continuity. If the checks pass, Alice verifies his

signature and decrypts the message.1

If any of the continuity checks fail, the client whistleblows against the offending

provider. Other clients can then query providers for any whistle messages they have

witnessed to reduce the number of continuity checks they perform.

1We have omitted this last step from Figure 4.1 for simplicity.

25

…

…

a…g

h(left) h(right)

bob: PK

a…m

h(left) h(right)

h…m

h(left) h(right)

n…z

h(left) h(right)

…

root

h(left) h(right)

h(roott-1) t

Figure 4.2: An authentication path from Bob’s mapping to the root node of the namespace
tree. Dotted nodes are not included in the response’s authentication path. Internal nodes
store the hash of each of their children. Because of the tree’s binary-search tree property,
users can be confident that only one particular mapping for a key exists in the tree.

4.1 Making Bindings Verifiable

To support the continuity checks that clients and other providers perform, the infras-

tructure for an identity provider’s namespace must satisfy the following requirements:

1. Clients are able to verify the validity of individual bindings.

2. Providers and clients are able to efficiently compare commitments to easily

detect equivocation.

3. Commitments are chained so that each epoch’s commitment is also committing

to a history of all prior commitments from the same provider.

Additionally, identity providers store other providers’ commitments which they

have witnessed, and maintain a queue of pending updates to the namespace to process

these in a batch at the beginning of the next epoch.

4.1.1 Committing to a Merkle Search Tree

Rather than committing separately to each binding, an identity provider constructs

an ordered Merkle tree and cryptographically commits to the root hash of the tree.

Before verifying that a key is valid, users must be able to tell whether the reported

public key is the only key bound to a name. In order to support this, an identity

provider’s Merkle tree is structured as a binary search tree. When looking up a

26

34fd5… bf701…

h(seed) 0

67fd3… 0ff0a…

h(roott-2) t-1

b1b18… 9ea7c…

h(roott-1) t
…
.

root0 roott-1 roott

Figure 4.3: prev pointers between root nodes form a linear chain of commitments repre-
senting the identity provider’s history.

particular binding, providers return an authentication path (Figure 4.2), i.e., a pruned

tree containing the search path to the name-to-key binding. Because of the binary

search tree property, users can be sure that only one such path exists.

4.1.2 Comparable Commitments

An identity provider’s commitments contain the hash of the provider’s tree. This is

computed by hashing the value of the root node, which itself contains the hashes of

any children nodes. CONIKS leverages this structure to efficiently compare witnessed

bindings and commitments to ensure non-equivocation. Since any change of a binding

results in a change in the value of the commitment, clients performing a validity check

can directly compare two commitments and can be sure that the authentication path

is consistent with the witnessed commitment.

4.1.3 Associating Commitments over Time

To help detect equivocation more efficiently, identity providers maintain a history of

their commitments. Thus, CONIKS clients must have a way of determining whether

a provider has presented different users and providers with diverging versions of its

commitment history. In order to support this, CONIKS providers include a hash

of the previous commitment in the current root of their namespace tree, along with

the current epoch number. By including the previous hash in the current root node,

identity providers create a hash chain of root nodes. (see Figure 4.3).

27

WhistleblowNot matchingInvalid

Valid Matchcmtt, roott

No response

Check
signature on
commitment

Compare hash
of previous root
with roott.prev?

roott-1

Check passed
Get provider's
commitment
for epoch t

Figure 4.4: Flow chart of the hash chain verification that clients and providers perform
every epoch as part of the check for non-equivocation about commitments.

WhistleblowNot matching

Check passed
ValidwitCmtt Match

Invalid

Check
signature on
commitment

No response

Compare both
commitments

Get foo.com's
commitment
for epoch t

from bar.com

cmtt from
foo.com

Figure 4.5: Flow chart of the comparison of witnessed commitments that clients perform ev-
ery epoch as part of the check for non-equivocation about commitments. Identity providers
and clients collaborate in verifying that the commitments they are witnessing for a partic-
ular identity provider do not differ.

4.2 Continuity Checks

CONIKS provides two mechanisms in which clients and identity providers collaborate

to verify, detect, and report any violation.

4.2.1 Checking for Commitment Non-Equivocation

To check that an identity provider is not presenting different commitments to different

users and providers, clients and providers verify the hash chain and compare the

results of these verifications. Users perform this check whenever their identity provider

issues a new commitment. Identity providers, however, perform this check for every

commitment which they witness so that users can later compare their version of a

commitment with what other providers are seeing to rapidly detect equivocation.

The hash chain verification is summarized in Figure 4.4. To verify the hash chain,

the verifier retrieves two commitments: (1) the commitment (cmtt, roott) for the cur-

rent epoch, and (2) the committed root node for the previous epoch roott−1. Clients

may request these from the identity provider if they are not being cached by the

28

client. The verifier first ensures that the provider correctly signed cmtt before check-

ing whether the previous pointer in roott matches the hash of roott−1. If these two

hashes do not match, the hash chain is invalid and the provider may be attempt-

ing to equivocate about its bindings. This invalid hash chain allows the verifier to

whistleblow against the provider.

In order to detect whether an identity provider is equivocating, a user will then

perform the protocol detailed in Figure 4.5. The user begins by querying a random

external identity provider. The client asks this assisting provider bar.com for the

signed commitment witCmtt which it has witnessed from provider foo.com. The

client then compares witCmtt with the commitment cmtt which foo.com directly

presented it. As with other violations, the user whistleblows if this verification fails

and the signature is valid.

4.2.2 Checking for Binding Validity

Whistleblow

Not matchingInvalid change

PKt,
authPatht

No response No response
Key unchanged,
valid change cmtt, roott MatchCheck

key
change

Check
signature on
commitment

Compute root hash from
authPatht, compare to

received roott hash

PKt-1

Valid

Invalid

Get public key
and auth.

path for epoch t

Get provider's
commitment
for epoch t

Check passed

Figure 4.6: Flow chart of the binding validity check a client performs every epoch. Clients
first verify whether public key has changed, and then verify the authentication path in the
namespace tree.

We outline the check for binding validity in Figure 4.6. To verify that the identity

provider returns a valid name-to-key binding, the client begins by looking up the

public key for the current epoch PKt along with the associated authentication path

authPatht. The client additionally retrieves the public key for the previous epoch

PKt−1 from local storage, or requests it from the provider, in order to check that the

current key meets one of the three following conditions:

1. The key is unchanged: PKt = PKt−1.

29

2. An owner-signed and authorized key change occurred.

3. The name has been revoked (owner-signed and authorized).

The client can check the first condition directly. For the second and third conditions,

the signed key change, or name revocation, request is included in the server’s Merkle

tree. A key change request must be signed by the old key and must contain the new

key; a name revocation request must be signed by the user’s most recent key. If the

binding does not meet either of these conditions, the key change, or revocation, is

invalid. A binding is also invalid if a name ever transitions from a revoked state to

any other state; once a client revokes a name, it is revoked forever. If an invalid key

change is detected, the client whistleblows against the provider.

4.2.3 Performing Checks after Missing Epochs

While CONIKS assumes that clients check every epoch, if a CONIKS client is offline

or otherwise unable to perform regular checks for some period of time, the client

will be able to “catch up” by performing checks which span multiple epochs. Clients

who perform these catch-up checks can be just as assured that their providers have

not equivocated as if they had been performing regular checks, though equivocations

during that offline period may go undetected until the client begins checking again.

To perform the catch-up, clients perform the validity check for their binding for each

epoch that they missed, and traverse the hash chain through the previous pointers

until they have verified that the last witnessed commitment is still included in the

provider’s most recent commitment. If at any point the hash of the previous root node

does not match the previous pointer in the more recently committed root node, the

client knows that the provider has changed its commitment history and it whistleblows

against the provider.

However, these checks do not, by themselves, imply that the identity provider has

not presented other users or providers with different commitments. To verify that the

30

provider has not equivocated, it is sufficient for clients to compare the current epoch’s

commitment with what other identity providers witnessed for that same epoch. Be-

cause any difference in previous epochs will cause future root hashes to differ (the

root’s previous pointer ensures this), malicious providers must continue to provide

diverging views. Therefore, as long as other providers verify the hash chain of each

witnessed commitment, clients will be able to detect whether a malicious provider

equivocated at any point in the past. The client can then use the evidence of the

diverging commitments to whistleblow against that provider.

4.3 Whistleblowing

Once a client detects any equivocation during one of the continuity checks, it whistle-

blows, sending evidence of the continuity violation to another CONIKS identity

provider. For example, if Alice, while checking for equivocation, discovers that her

provider foo.com has published two versions of its commitment history at epoch t,

she sends her hash chain computations up to epoch t− 1 and foo.com’s commitment

and root node for epoch t to a random identity provider. This demonstrates that

foo.com’s previous commitment is not included Alice’s hash chain computations at

epoch t.

Because identity providers and users collaborate in detecting provider misbehav-

ior, identity providers verify and then distribute all whistle messages they receive in

an epoch in batches to all other CONIKS providers. Identity providers store any

such messages they receive and have distributed to others so that clients can later

query them for any evidence of misbehavior by a particular provider that they have

recorded.2 If a user receives evidence of a continuity violation, it can choose to sus-

pend any further continuity checks. Because identity providers distribute whistle

messages, the time it takes for a whistle message to propagate through the system is

2 We have omitted whistleblowing from the continuity checks described in §4.2 for simplicity.

31

roughly one epoch as identity providers distribute new whistle messages along with

their own new commitment. In practice, users may also simply publish the evidence

of misbehavior in a public forum where other users can directly retrieve and verify

the evidence.

CONIKS’s whistleblowing mechanism can deter identity providers from equivo-

cating about name-to-key bindings because evidence of the misbehavior can spread

through the system rapidly. In practice, providers will want to avoid the repercussions

associated with such misbehavior becoming public, and will therefore be extremely

disincentivized from misbehavior.

32

Chapter 5

Security Analysis

CONIKS’s infrastructure and protocols are designed to protect against and detect

attacks from identity providers. Thus, CONIKS provides the following guarantees:

• With high probability, users attempting to communicate will rapidly detect any

provider equivocation.

• If users can communicate with a single trusted provider, any equivocation by

their providers will be detected within a single epoch.

• Users will immediately detect any violations of binding validity.

5.1 Detecting Equivocation

If two users, Alice and Bob, wish to communicate, they can be assured that they

will obtain the correct public keys for this communication, or that they will detect

an attack with high probability within a few epochs. Importantly, Alice and Bob do

not need to communicate via an existing secure channel to guarantee this, i.e., even

if Bob ends up communicating with a fraudulent Alice, Bob will detect a violation of

continuity soon with high probability.

Without violating the validity of name-to-key bindings, malicious identity

providers might instead present two different, but independently valid, name-to-key

33

binding histories, choosing which users and providers will be presented which set of

bindings. Even if both histories are valid, the provider has equivocated.

Because CONIKS clients check for equivocation by a provider foo.com by contact-

ing other randomly chosen providers and asking them what commitment they have

witnessed from foo.com, if any client checks with a provider who sees a different com-

mitment than the client saw, then equivocation is detected. However, foo.com may

be presenting to the providers randomly chosen by Alice and Bob the same history as

it presents the two users, respectively, so that neither user detects the attack during

this check.

To increase the probability of detecting an equivocation, Alice and Bob can per-

form multiple rounds of the non-equivocation check comparing their commitments

for foo.com with those witnessed by multiple randomly chosen providers. Therefore,

how many providers must Alice and Bob contact to discover an equivocation about

Alice’s key with probability α? We will first analyze this for a simple case where

Alice’s malicious provider foo.com is not colluding with other providers, and then we

will expand it to the more general case. foo.com wishes to present Alice and Bob with

different commitments. foo.com can choose to present other identity providers either

commitment (it could present more commitments, but these only weaken its attack).

Suppose that foo.com chooses a fraction f of providers who see Alice’s commitment,

and then 1 − f see Bob’s. The probability that Alice fails to discover the violation

within k checks is fk, and the probability that Bob fails to discover the violation is

(1 − f)k. The probability that both will fail to discover the violation is (f − f 2)k,

which is maximized with f = 1
2
. Alice and Bob therefore discover equivocation with

probability

α = 1−
(

1

4

)k

34

��

����

����

����

����

��

�� �� �� �� �� ���

��
��
��
���
��
��
��

�
��
��
��
��
��
��
��
��
��
��
��
�

��������������������������

�����������������������
�����������������������
�����������������������

Figure 5.1: Two users, Alice and Bob, will be able to, with high probability, detect any
equivocation attacks which attempt to sabotage their communication with a few verification
checks. This graph shows the probability that Alice and Bob will detect an equivocation
after each performing k checks with random providers.

In order to discover the equivocation with probability α, Alice and Bob must per-

form − log2(1 − α)/2 checks. After performing 5 checks, Alice and Bob would have

discovered an equivocation with 99.9% probability.

In the more general case, if foo.com colludes with other providers, allowing the

providers to collectively choose which requests see which versions of particular name-

to-key bindings, Alice and Bob’s verification will become harder to perform. However,

as the number of identity providers in the system (and therefore, the number of iden-

tity providers not participating in the collusion) increases, the difficulty of verification

decreases.

Formally, foo.com is colluding with a proportion p of all providers. If Alice queries

one of these colluding providers, it will return a commitment which appears valid to

Alice. If Bob queries one of these colluding providers, it will return a commitment

which appears valid to Bob. Therefore, Bob or Alice must randomly choose a non-

colluding provider to discover a continuity violation. The probability of Alice failing

to detect equivocation within k checks is therefore (p+ (1−p)f)k and the probability

of Bob failing to detect equivocation within k checks is (p + (1 − p)(1 − f))k. The

35

probability that neither Alice nor Bob detects equivocation is

((p+ (1− p)f)(p+ (1− p)(1− f)))k

As before, foo.com picks f = 1
2

to maximize this probability. The probability of Alice

or Bob discovering this equivocation is

α = 1−
(
p+

1− p
2

)2k

Figure 5.1 plots the probability of discovery as p and k vary. If fewer than 50% of

providers are colluding, Alice and Bob will detect an equivocation within 5 checks

with over 94% probability. In practice, large-scale collusion is unexpected, as today’s

e-mail services have many providers operating with different business models and

under many different legal and regulatory regimes.

A single trusted provider. Importantly, if Alice and Bob can communicate

with a single CONIKS provider that both trust, they will be able to immediately de-

tect any equivocation which occurs between them. If an equivocation between Alice

and Bob occurs, this trusted provider will have to have witnessed the same commit-

ment provided to one of Alice or Bob, but not both. Thus, if both communicate

with this provider, then an equivocation is guaranteed to be detected. Finding such

a trusted provider may not be difficult in practice, as privacy-oriented organizations

or Internet watchdogs may operate well-known providers for exactly this purpose.

5.2 Ensuring Validity

All clients will either see all bindings as valid, or immediately detect a violation. An

invalid name-to-key binding has either had its key changed without authorization,

or two bindings exist in the same commitment for the same name. When a client

36

requests this tampered-with binding, a provider returns the modified binding, and an

authentication path for the binding. If two such bindings exist in the same Merkle

search tree, the authentication path would have to be invalid. On the other hand,

if the binding has changed without authorization, the misbehaving provider will be

unable to respond when the client requests a proof of validity for the key change,

because this proof requires an authorizing signature. In both cases, the client will

have enough evidence to whistleblow on the provider. As long as the owner of the

binding performs the validity check at every epoch, such attacks will be detected.

5.3 Limiting the Effects of Denied Service

Sufficiently powerful identity providers may refuse to distribute commitments to iden-

tity providers with which they do not collude. In these cases, clients who query these

honest providers will be unable to obtain the two incompatible commitments needed

as explicit proof of equivocation. Clients may help circumvent this by submitting

witnessed commitments from identity providers to these honest identity providers.1

An honest identity provider can verify that submitted commitments originated at a

particular provider because those commitments contain the original provider’s signa-

ture.

Similarly, any identity provider may choose to ignore requests about individual

bindings with the intentions of preventing the clients from performing validity and

uniqueness checks. In these cases, clients may be able to circumvent this attack

by using other providers to proxy their requests, with the caveat that a malicious

provider may ignore all requests for this name. This renders her identity unusable for

as long as the provider denies her service. However, this only allows the provider to

deny service for a particular binding, and does not enable the provider to present a

new key for that name-to-key binding to other users.

1CONIKS does not currently support this feature. We leave this enhancement for future work.

37

Chapter 6

Discussion

In this chapter, we discuss some of the details of implementing and deploying CONIKS

in practice, and some possible protocol extensions.

6.1 Scaling CONIKS

CONIKS’s design requires that identity providers perform some additional work when

compared to a simple identity service. In particular, identity providers must perform

two tasks: communicating commitments at each epoch and verifying other provider’s

commitments at each epoch. In order to measure the scalability of a straight-forward

implementation of a CONIKS identity provider, we performed a set of microbench-

marks. Our results indicate that even with a straight-forward implementation, a single

machine is able to quickly handle the additional overhead imposed by CONIKS for

workloads similar in scale to the largest identity providers in use today.

6.1.1 Computing and Transmitting Commitments

To understand the computational requirement of computing the hash, we created and

signed a Merkle search tree containing 50 million entries, which required 40.24 seconds

38

on a modern machine. To scale to 1 billion entries, this would require approximately

15 minutes. While 15 minutes may be a significant period of time, this is bearable in

practice as identity providers only need to compute this once per epoch and only the

largest providers will have over 1 billion entries.

In addition to the computational cost of epoch commitments, identity providers

must transmit these commitments to each other. Each commitment is composed of

the root node and a signature. Using RSA-2048, the size of the signature is 256 bytes.

The root node itself contains 4 cryptographic hashes. Using SHA-512, the total size

of the commitments is 0.5 KB. For a network of 1 million providers, then, the total

upstream and downstream bandwidth requirements are both 488 MB.

6.1.2 Commitment Verification

Before storing newly witnessed commitments from other providers, an identity

provider must verify those commitments. This involves checking that the signature

matches the supplied root node, and checking that the root node’s previous commit-

ment hash matches the previously witnessed root node. Signature verification with

RSA-2048 requires 0.16 ms. Computing and comparing the hashes requires 270 ns

(not including time to fetch the previously witnessed commitment, which is storage

mechanism dependent). In order to verify 1 million new commitments, an identity

provider would need to perform 2.67 minutes of computation.

6.1.3 Distributed Operation by Identity Providers.

The semantics of CONIKS require identity providers to always return consistent infor-

mation. For a well-behaving identity provider running on a single server, this is trivial.

The response for a query at any particular epoch should always be the same. However,

large identity providers will typically be implemented on a distributed system, such

39

that updates to bindings are handled by several different (potentially geographically-

distant) servers.

One potential implementation is to use a synchronization point between servers

at the start of every epoch. Each server would submit the updates it processed

since the last epoch to a single master server. This server would then compute the

commitment for the next epoch and return it to the other servers. As demonstrated by

our simple benchmarks, a single server could perform this task for a identity provider

handling over 1 billion bindings. For fault tolerance, this “single” server could also

be implemented as a replicated state machine, e.g., running Paxos [30].

6.2 Caching Key Information

While CONIKS does not require that clients store state, today’s devices (computers,

cellphones, etc.) are capable of caching data. Clients may improve performance by

caching the results of prior key lookups. This may result in clients missing account

deletion messages, but this is a problem with most revocation schemes. Clients wish-

ing to limit their exposure to revoked keys can regularly flush their cache or choose

not to cache keys at all.

6.3 Key Loss and Account Protection

CONIKS users and user clients are responsible for managing their private keys.

If users choose not to store private keys locally, they may employ password-

authenticated key exchange protocols to store their keys on remote servers or even

identity providers. One disadvantage of such mechanisms is that users may forget

their passwords or otherwise lose their private keys. CONIKS, however, does not

itself provide a mechanism for account recovery since such mechanisms necessarily

require out-of-band verification of account ownership, and ultimately require trusting

40

identity providers to truthfully execute such verifications. A malicious provider

could, for example, attack a user Alice by claiming that Alice lost her key and was

verified with a new key which is actually controlled by the provider.

However, a user can be sure that even if a key is lost, her identity remains secure;

she can continue performing continuity checks on her old binding. Nonetheless, if a

future attacker manages to obtain her private key, that attack may be able to assume

her “lost identity”. In practice, this could be prevented by allowing the provider

to issue a name revocation with its own signature, rather than the user’s signature.

In such cases, the provider would use some specific out-of-band authorization steps

to authorize such an action. However, unlike allowing providers to issue key change

operations, a name revocation does not require much additional trust in the provider,

because a malicious provider could already render an account unusable through denial

of service.

6.4 Protocol Extensions

6.4.1 Concealing the Number of Users

Identity providers may not wish to reveal their exact number of users. CONIKS allows

providers to insert “null” entries in their binding trees, so long as the entries do not

violate the binary search tree property. Such entries can leave the tree unbalanced,

or larger than it would have otherwise been. Because of this, providers only expose

an upper bound on the number of users they manage. This leads to slightly longer

lookups and hash computations. However, this additional overhead would be small.

6.4.2 Returning Updated Bindings between Epochs

Users may desire the ability to use updated bindings before the next epoch. Identity

providers could support this by maintaining a second “staging” tree, which contains

41

the updates which have been made during the current epoch, and which guarantees

that the bindings are continuous. Users, however, would not be able to perform

CONIKS continuity continuity checks for their updated bindings in this staging tree,

and would have to wait until the following epoch. When an updated binding is

requested, the provider returns the new information, and an authentication path

demonstrating that the current epoch’s binding is compatible with the new informa-

tion. The provider signs this message to make it irrefutable.

During the next epoch, the identity provider incorporates the new updates and

adds a link from the new epoch’s root node to the last staging tree. Any clients which

saw an updated binding on the previous day must perform a check to ensure that the

witnessed update was correctly incorporated into the epoch. They will check that

the binding they received exists in the current epoch and that no conflicting bindings

existed in the same staging tree. Any future requests for the binding will be checked

as in the normal CONIKS checks.

42

Chapter 7

Prototype Implementation

To demonstrate the practicality and usability of CONIKS, we have implemented

ConiksChat, a prototype XMPP chat service and client which supports Off-the-

Record (OTR) Messaging, a secure instant messaging protocol [10]. In particular,

we have modified the OTR plug-in [23] for the Pidgin instant messaging client [2] to

use CONIKS for key management, and the ConiksChat service leverages the Tigase

XMPP/Jabber Server [59] platform for user management.

7.1 Background: XMPP, OTR and Tigase

7.1.1 XMPP

The Extensible Messaging and Presence Protocol (XMPP) [62] provides a generalized,

extensible framework for exchanging XML data in near-real-time between two network

endpoints. This XML protocol is mainly used to build instant messaging, presence,

and request-response services, and is based on Jabber [1], an open instant messaging

protocol created in 1998.

Since XMPP is an open standard, not only can any XMPP service implementation

may interoperate with other commercial or open-source implementations, but this

43

protocol allows for inter-operability with other non-XMPP messaging systems through

specialized server-side services who translate between XMPP and other messaging

protocols (e.g., SMTP, SMS) [62].

7.1.2 Off-the-Record Messaging

This protocol for private social communication is designed to provide perfect forward

secrecy and repudiability, two properties the authors of OTR argue are necessary

for online social communications [10]. To keep messages private, OTR employs AES

encryption, and the encryption key is chosen through a Diffie-Hellman key exchange.

Furthermore, to achieve perfect forward secrecy, two users communicating with each

other via OTR re-key as frequently as possible to reduce the window of vulnerability

when it is possible to decrypt past messages. At the same time, users authenti-

cate each other using digital signatures, and prove authorship of each message using

message authentication codes.

The current version of the OTR plug-in (v4.0.0) for Pidgin [23] implements the

protocol as follows. Before a user Alice can begin to use OTR, she must generate a

DSA key pair through the plug-in, which stores it locally. Then, when Alice wishes

to start a private conversation with Bob via OTR, the plug-in performs the Diffie-

Hellman key exchange and authenticates Bob in the background. Since Alice’s client

does not recognize Bob’s fingerprint, the plug-in suggests she authenticate Bob.

The plug-in gives Alice two options for authenticating Bob: (1) She can authen-

ticate him via a shared secret [64], or (2) They can manually verify each other’s

public-key fingerprint. Both Alice and Bob need to perform one of these authentica-

tion mechanisms for the conversation to be private. To enhance usability, the plug-in

caches all authenticated contacts’ public-key fingerprints to avoid the authentication

process for later conversations.

44

7.1.3 Tigase XMPP/Jabber Server

Tigase is an open-source Java implementation of an XMPP/Jabber server [59]. As

defined in the XMPP Core RFC [62], this server manages messaging sessions to and

from authorized clients as well as connections with other servers via XML streams.

This server may also be configured to support storage of user data. More specifically,

it can support various relational database management systems for this purpose.

The Tigase database schema defines three tables, the most important of which is

tig users which contains the main user data such as user ID, password, account

creation time.

7.2 ConiksChat Implementation Details

Since XMPP, OTR and Tigase are all open protocols/software, we found them to

be the most suitable choices for implementing a first prototype CONIKS identity

provider. In particular, we chose to integrate the CONIKS functionality directly with

these applications. ConiksChat consists of three main components:

1. The identity provider service (in Java),

2. The client-side CONIKS-OTR plug-in for Pidgin (in C), and

3. Basic CONIKS message protocol buffers [4].

7.2.1 ConiksChat Service

Our ConiksChat service currently supports name registration, public key lookups, and

commitment lookups for any epoch. It is important to note that the Pidgin OTR plug-

in guided many of our design decisions for this service. As the current implementation

of the plug-in employs DSA key pairs for authenticating users, ConiksChat currently

only allows for registration of DSA keys. We hope to expand our service to support

any kind of public key.

45

The namespace Merkle search tree is implemented using specially developed tree

nodes. The leaf nodes are stored in lexicographic ordering and the tree is padded if

the number of nodes is not a power of two. This allowed us to implement the exten-

sion of obscuring the number of users that are in the identity provider’s namespace.

Furthermore, the leaf nodes are stored in a HashMap access to the entire Merkle tree

because every tree node has a pointer to its parent node. The provider’s snapshot

history is stored in a linked list, where each node, or record, contains the following

information:

• The epoch of the snapshot,

• The HashMap containing the leaf nodes,

• The root node of the Merkle tree,

• And the signed root hash.

The head of the list is the most recently added snapshot record. This structure

facilitates public-key and commitment lookups.

To leverage the Tigase database, and in particular the tig users table, for user

registration, we modified the existing schema to include a column for the user’s public

key as well as an OTR support flag.

Because ConiksChat is currently the only existing CONIKS identity provider,

and the number of users in the system is very low, a name registration marks the

beginning of a new epoch. To update its history, the identity provider copies the

existing name-to-key bindings from the previous version and generates a new Merkle

tree including the new binding. It also generates the signature on the root hash at

this time.

When a new user registers with ConiksChat, the server first ensures that the user

already registered with the Tigase component of the service. If she did, the server

checks whether there already exists a name-to-key binding for the received name in its

CONIKS namespace. If it does not, the server updates the corresponding database

46

entry with the received public key and updates its history starting a new epoch,

otherwise, the user is notified of the name conflict.

A public key lookup occurs when a ConiksChat client is performing the conti-

nuity checks. The server retrieves the snapshot record for the requested epoch, and

constructs the authentication path starting at the appropriate leaf node and sends it

to the client for verification. Since our server generates the signed root hash of the

namespace tree when it updates its history, a commitment lookup merely requires the

server to return the root hash and the signed root hash to the client for the requested

epoch. However, ConiksChat currently does not distribute the new commitment at

the beginning of every epoch, nor does it support witnessed commitments.

7.2.2 ConiksChat Client

The CONIKS-OTR plug-in has required us to make minor modifications to

libotr [22], the portable OTR Messaging library, as well as make significant

changes to the original OTR Pidgin plug-in to support name registration and the

continuity checks.

We added the client-side registration mechanism to the DSA key pair generation

module of the plug-in, by sending the user’s account name and public key to the server

after the key pair has been generated. To comply with the OTR key exchange the

key pair is also still stored locally. We hope to add support for password-encrypted

storage of private keys on the server in the future, avoiding the storage of any keys.

The mechanism for starting a private conversation and exchanging public keys

remains unchanged, although we have significantly modified the fingerprint authen-

tication process to perform the continuity checks. Alice’s client authenticates her

contact Bob’s fingerprint in the following steps:

47

1. The plug-in looks up Bob’s public key at the ConiksChat service1, which returns

an authentication path for Bob’s name-to-key binding if he has also registered

his public key with ConiksChat.

2. The client requests the server’s most recent commitment.

3. The plug-in performs the continuity checks on Bob’s name-to-key binding using

the retrieved information. In particular, the continuity checks, verify the sig-

nature on the commitment, check the hash chain, and compute the root hash

from the authentication path. If any of the checks failed, Alice is notified.

If Bob has not registered his name-to-key binding with ConiksChat, i.e., he does not

use the CONIKS-OTR plug-in for Pidgin, the server will respond to a key lookup

with the appropriate error message. The plug-in then performs the original OTR

authentication mechanism.

To perform the continuity checks on her own name-to-key binding, a user’s client

uses the mechanism for contact authentication analogously with her own account

name. The continuity checks are triggered when the user first logs into her Pidgin

account and the CONIKS-OTR plug-in is enabled. If the checks pass, the client

caches the most recent commitment it verified so that the user can still perform the

continuity checks, even after a longer period of inactivity. If the any of the continuity

checks fail, the client displays a notification warning Alice to proceed with caution,

but does not disable messaging. We hope to provide users with a means to revoke

their name and whistle-blowing in the case of failed continuity checks on their own

bindings.

Similarly as with the server, the client only supports a subset of the CONIKS

functionality. CONIKS-OTR is not able to contact randomly chosen providers to

check for non-equivocation, nor does it support whistle-blowing.

1Because ConiksChat does not currently support key change, any version of the snapshot ought
to contain the name-to-key binding Bob first registered. We opt for requesting the information of
the current epoch.

48

7.2.3 CONIKS Protocol Buffers

Lastly, because the client is implemented in C, while the server is implemented in Java,

we needed a means to exchange messages between both endpoints. One option was to

leverage the existing XMPP infrastructure, but this would have required us to encode

all messages into XML in the client and process them in the server. Furthermore,

given the nature of the data in CONIKS, i.e., public key material and hashes, a text-

based message format would have been inadequate. Thus, we use Google Protocol

Buffers (Protobufs) [4] for generating message formats compatible between the client

and the server, and which allow us to define specific message types with the required

data types for every different kind of message that the client and server exchange.

With the appropriate compiler2, Protobufs are used to generate message objects

(in Java) and message structs (in C) which we then use to serialize and parse messages

between clients and the server.

7.2.4 Preliminary Evaluation and Discussion

ConiksChat is currently still in its early stages as it currently does not implement the

full CONIKS functionality. However, to see whether our implementation of the service

is viable, we ran some preliminary performance tests. In particular, we replicated the

microbenchmark discussed in 6.1.1 to measure how long it takes for our server to

generate the full Merkle tree. Over 10 trials, it takes around 57.10 seconds on average

to compute the Merkle tree with 3 million users, each with a 1024-bit DSA key. This

is significantly slower than our simulated microbenchmarks, and the size of the Merkle

tree becomes prohibitive for a modern machine for any greater number of users.

While the current implementation is acceptable for a small number of ConiksChat

users, this measurement alone tells us that we need to find a better implementation

2We use the protoc-c compiler [3] to generate our message structs for the client as the Google
Protobufs only support compilation into Java, C++ or Python.

49

for the Merkle tree to make ConiksChat viable in practice. Furthermore, we were

only able to successfully implement both continuity checks in simulation, but not in

ConiksChat. Currently, the prototype is able to verify non-equivocation properly,

but not binding validity. We believe this issue stems from the transition to using

Protobufs for representing the authentication path in ConiksChat.

Apart from needing to implement the full CONIKS functionality, our ConiksChat

implementation leaves room for improvement in other areas as well. For instance,

the server currently does not have any means to restore its state to the most recent

epoch in the case of a failure. Additionally, obtaining the public key in the client is

significantly slower than in the original OTR plug-in for Pidgin, which does not extract

the public key from the generated key pair. Moreover, client-server communication

could be done more efficiently. Currently, the client and server tear down the TLS

connection after each message exchange. Thus, the TLS handshake incurs additional

overhead every time the client performs a continuity check or a lookup.

50

Chapter 8

Conclusion

Future Work. We would like to develop a more general API for CONIKS to provide

a framework for implementing CONIKS identity providers as well as building various

kinds of secure messaging applications. There are also a few possible directions for

research that we could explore further. We could consider key revocation without

account forfeiture and recovery of encrypted data after key loss in the design of

CONIKS, two major concerns users have with existing key management systems.

Another interesting direction for future work would be to design CONIKS purely as

an identity service that provides secure credentials for users across third-party sites.

End-to-end secure communication relies on the ability of parties to discover and

use each others’ cryptographic keys. Towards this end, today’s models for discovering

public keys concentrate on establishing “correct” mappings from a key to a named

real-world entity and concerns itself with the threat of external attackers. Yet these

models do not cope with insider attacks, such as those that coerce a certifier into

issuing a bogus certificate for a user.

We introduce the notion of continuity of identity as a basis for preserving secure

communication in the face of untrusted providers, and we define two properties that

key management systems must provide to achieve such continuity: non-equivocation

51

about commitments and validity of name-to-key bindings. Our design for CONIKS,

a scalable and usable key management system for end-users, efficiently realizes the

continuity of identity model and makes encryption keys invisible to users. CONIKS

provides continuity by ensuring that identity providers cannot equivocate in how they

answer requests for a named user’s keys: either they must always return the same key,

or demonstrate that the name has been updated validated to a new key or a revoked

state. If an identity provider acts otherwise, CONIKS users and providers detect such

continuity violations rapdily, with high probability, and with non-repudiable evidence

to serve as a proof of misbehavior.

Our security analysis shows that CONIKS provides this strong security guarantee

while requiring clients to store little to no state. Furthermore, only a single honest

provider is necessary to detect misbehavior, although the probability of detection

improves exponentially with the fraction of honest providers. Our prototype chat

service and microbenchmarks demonstrate that CONIKS is practical: it integrates

naturally into the existing Internet and Web ecosystem, and it scales to millions of

providers and billions of users.

52

Bibliography

[1] Jabber.org. http://www.jabber.org, Retrieved Apr. 2014.

[2] Pidgin. http://pidgin.im, Retrieved Apr. 2014.

[3] protobuf-c. https://github.com/protobuf-c/protobuf-c, Retrieved Apr.
2014.

[4] Protocol Buffers. https://code.google.com/p/protobuf, Retrieved Apr. 2014.

[5] OneName. https://onename.io, Retrieved May 2014.

[6] USA PATRIOT Act of 2001. http://www.gpo.gov/fdsys/pkg/PLAW-

107publ56/pdf/PLAW-107publ56.pdf, Retrieved Nov. 2013.

[7] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe
Martin, and Carl Porth. BAR fault tolerance for cooperative services. In Proc.
SOSP, Oct. 2005.

[8] David G. Andersen, Hari Balakrishnan, Nick Feamster, Teemu Koponen,
Daekyeong Moon, and Scott Shenker. Accountable internet protocol (aip). In
Proc. SIGCOMM, Aug. 2008.

[9] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Effi-
cient protocols for realistic adversaries. J. Cryptol., 23(2):281–343, April 2010.

[10] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record communication,
or, why not to use pgp. In Proc. WPES, Oct. 2004.

[11] Stephen Braun, Anne Flaherty, Jack Gillum, and Matt Apuzzo. Secret to
Prism program: Even bigger data seizure. http://bigstory.ap.org/article/
secret-prism-success-even-bigger-data-seizure, Jun. 2013.

[12] J Callas, L Donnerhacke, H Finney, and R Thayer. RFC 2440 OpenPGP Message
Format, Nov. 1998.

[13] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Mor-
cos, and Ronald L. Rivest. Certificate chain discovery in SPKI/SDSI. Journal
of Computer Security, 9(4):285–322, Dec. 2001.

53

http://www.jabber.org
http://pidgin.im
https://github.com/protobuf-c/protobuf-c
https://code.google.com/p/protobuf
https://onename.io
http://www.gpo.gov/fdsys/pkg/PLAW-107publ56/pdf/PLAW-107publ56.pdf
http://www.gpo.gov/fdsys/pkg/PLAW-107publ56/pdf/PLAW-107publ56.pdf
http://bigstory.ap.org/article/secret-prism-success-even-bigger-data-seizure
http://bigstory.ap.org/article/secret-prism-success-even-bigger-data-seizure

[14] Paul Everton. Google’s Gmail Hacked This Weekend? Tips To Beef Up Your
Security. http://www.huffingtonpost.com/paul-everton/googles-gmail-

hacked-this_b_3641842.html, Jul. 2013.

[15] Ariel J. Feldman, Aaron Blankstein, Michael J. Freedman, and Edward W. Fel-
ten. Social networking with Frientegrity: Privacy and integrity with an untrusted
provider. In Proc. USENIX Security, Aug. 2012.

[16] Ariel J. Feldman, William P. Zeller, Michael J. Freedman, and Edward W. Felten.
SPORC: group collaboration using untrusted cloud resources. In Proc. OSDI,
Oct. 2010.

[17] Ed Felten. A Court Order is an Insider Attack. https://freedom-to-tinker.
com/blog/felten/a-court-order-is-an-insider-attack/, Oct. 2013.

[18] Shirley Gaw, Edward W. Felten, and Patricia Fernandez-Kelly. Secrecy, flagging,
and paranoia: Adoption criteria in encrypted email. In Proc. CHI, Apr 2006.

[19] Barton Gellman. The FBI’s Secret Scrutiny. http://washingtonpost.com/wp-
dyn/content/article/2005/11/05/AR2005110505366.html, Nov. 2005.

[20] Barton Gellman and Laura Poitras. U.S., British intelligence mining
data from nine U.S. Internet companies in broad secret program. http:

//www.washingtonpost.com/investigations/us-intelligence-mining-

data-from-nine-us-internet-companies-in-broad-secret-program/

2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html, Jun.
2013.

[21] Stefan George, Felix Leupold, and Carolyn Estrada. BlockPRISM. http://www.
indiegogo.com/projects/blockprism-org/, Retrieved Aug. 2013.

[22] Ian Goldberg, Katrina Hanna, and Nikita Borisov. libotr. http://sourceforge.
net/p/otr/libotr/ci/master/tree/, Retrieved Apr. 2014.

[23] Ian Goldberg, Katrina Hanna, and Nikita Borisov. pidgin-otr. http://

sourceforge.net/p/otr/pidgin-otr/ci/master/tree/, Retrieved Apr. 2014.

[24] Glenn Greenwald and Ewen MacAskill. NSA Prism program taps in to user data
of Apple, Google and others. http://www.theguardian.com/world/2013/jun/
06/us-tech-giants-nsa-data, Jun. 2013.

[25] R. Hously, W. Ford, W Polk, and D. Solo. RFC 2459 Internet X.509 Public Key
Infrastructure, Jan. 1999.

[26] Alastair Jamieson and Erin McClam. Millions of Target customer’s
credit, debit card accounts may be hit by data breach. http:

//www.nbcnews.com/business/consumer/millions-target-customers-

credit-debit-card-accounts-may-be-hit-f2D11775203, Dec. 2013.

54

http://www.huffingtonpost.com/paul-everton/googles-gmail-hacked-this_b_3641842.html
http://www.huffingtonpost.com/paul-everton/googles-gmail-hacked-this_b_3641842.html
https://freedom-to-tinker.com/blog/felten/a-court-order-is-an-insider-attack/
https://freedom-to-tinker.com/blog/felten/a-court-order-is-an-insider-attack/
http://washingtonpost.com/wp-dyn/content/article/2005/11/05/AR2005110505366.html
http://washingtonpost.com/wp-dyn/content/article/2005/11/05/AR2005110505366.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
http://www.indiegogo.com/projects/blockprism-org/
http://www.indiegogo.com/projects/blockprism-org/
http://sourceforge.net/p/otr/libotr/ci/master/tree/
http://sourceforge.net/p/otr/libotr/ci/master/tree/
http://sourceforge.net/p/otr/pidgin-otr/ci/master/tree/
http://sourceforge.net/p/otr/pidgin-otr/ci/master/tree/
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.nbcnews.com/business/consumer/millions-target-customers-credit-debit-card-accounts-may-be-hit-f2D11775203
http://www.nbcnews.com/business/consumer/millions-target-customers-credit-debit-card-accounts-may-be-hit-f2D11775203
http://www.nbcnews.com/business/consumer/millions-target-customers-credit-debit-card-accounts-may-be-hit-f2D11775203

[27] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perring, Collin Jackson, and
Virgil Gligor. Accountable key infrastructure (AKI): a proposal for a public-key
validation infrastructure. In Proc. WWW, 2013.

[28] Gabrielle Kratsas and Karl Gelles. Target breach helps usher in new world of
data security. http://www.usatoday.com/story/money/business/2014/02/

22/retail-hacks-security-standards/5257919/, Feb. 2014.

[29] Max Krohn and Chris Coyne. Keybase. https://keybase.io, Retrieved Feb.
2014.

[30] Leslie Lamport. The part-time parliament. Trans. Computer Systems, 16(2),
1998.

[31] Ben Laurie and Emilia Kasper. Revocation Transparency. http://sump2.

links.org/files/RevocationTransparency.pdf, Retrieved Feb. 2014.

[32] Ben Laurie, Adam Langley, and Emilia Kasper. RFC 6962 Certificate Trans-
parency, Jun. 2013.

[33] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate Transparency. http:
//www.certificate-transparency.org, Retrieved Aug. 2013.

[34] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha. Secure un-
trusted data repository (SUNDR). In Proc. OSDI, Dec. 2004.

[35] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi,
Mike Dahlin, and Michae Walfish. Depot: Cloud storage with minimal trust. In
Proc. OSDI, Oct. 2010.

[36] David Mazières, Michael Kaminsky, M. Frans Kaashoek, and Emmett Witchel.
Separating key management from file system security. In Proc. SOSP, Dec. 1999.

[37] Ralph C. Merkle. A digital signature based on a conventional encryption func-
tion. In Proc. CRYPTO, Aug. 1987.

[38] namecoin1. Namecoin. http://namecoin.info/, Retrieved Nov. 2013.

[39] namecoin2. Namecoin. https://en.bitcoin.it/wiki/Namecoin, Retrieved
Nov. 2013.

[40] OAuth. http://oauth.net/, Retrieved Nov. 2013.

[41] Nicole Perloth. Yahoo Breach Extends Beyond Yahoo to Gmail, Hotmail,
AOL Users. http://bits.blogs.nytimes.com/2012/07/12/yahoo-breach-

extends-beyond-yahoo-to-gmail-hotmail-aol-users/, Jul. 2012.

[42] Hewlett-Packard Development Company, L.P. HP Cloud Identity Service. http:
//www.hpcloud.com/products-services/identity-service, Retrieved Nov.
2013.

55

http://www.usatoday.com/story/money/business/2014/02/22/retail-hacks-security-standards/5257919/
http://www.usatoday.com/story/money/business/2014/02/22/retail-hacks-security-standards/5257919/
https://keybase.io
http://sump2.links.org/files/RevocationTransparency.pdf
http://sump2.links.org/files/RevocationTransparency.pdf
http://www.certificate-transparency.org
http://www.certificate-transparency.org
http://namecoin.info/
https://en.bitcoin.it/wiki/Namecoin
http://oauth.net/
http://bits.blogs.nytimes.com/2012/07/12/yahoo-breach-extends-beyond-yahoo-to-gmail-hotmail-aol-users/
http://bits.blogs.nytimes.com/2012/07/12/yahoo-breach-extends-beyond-yahoo-to-gmail-hotmail-aol-users/
http://www.hpcloud.com/products-services/identity-service
http://www.hpcloud.com/products-services/identity-service

[43] DotBIT Project. Namecoin. https://github.com/namecoin/namecoin, Re-
trieved Nov. 2013.

[44] Electronic Frontier Foundation. National Security Letters - EFF Surveillance
Self-Defense Project. https://ssd.eff.org/foreign/nsl, Retrieved Aug.
2013.

[45] Electronic Frontier Foundation. Encrypt the Web Report: Who’s Do-
ing What. https://www.eff.org/deeplinks/2013/11/encrypt-web-report-
whos-doing-what, Retrieved Feb. 2014.

[46] Electronic Frontier Foundation. National Security Letters. https://www.eff.

org/issues/national-security-letters, Retrieved Nov. 2013.

[47] Electronic Frontier Foundation. Sovereign Keys. https://www.eff.org/

sovereign-keys, Retrieved Nov. 2013.

[48] Electronic Frontier Foundation. SSL Observatory. https://www.eff.org/

observatory, Retrieved Nov. 2013.

[49] hightorque. OneName:the Decentralized Identity System for Bitcoin.
http://www.reddit.com/r/Bitcoin/comments/201g66/onename_the_

decentralized_identity_system_for/, Retrieved May 2014.

[50] Intel Corporation. Intel Identity Services. http://software.intel.

com/cloudservicesplatform/service/intel-identity-services, Retrieved
Nov. 2013.

[51] Internet Mail Consortium. S/MIME and OpenPGP. http://www.imc.org/

smime-pgpmime.html, Retrieved Aug. 2013.

[52] Janrain, Inc. Janrain. http://janrain.com/products/identity-service/,
Retrieved Nov. 2013.

[53] Microsoft Corportation. How to Recognize Erroneously Issued VeriSign Code-
Signing Certificates. http://support.microsoft.com/kb/293817, Feb. 2007.

[54] Microsoft Corportation. MS01-017: Erroneous VeriSign-Issued Digital Certifi-
cates Pose Spoofing Hazard. http://support.microsoft.com/kb/293818/en-
us, Feb. 2007.

[55] OpenID Foundation. OpenID. http://openid.net/, Retrieved Nov. 2013.

[56] OpenStack, LLC. Keystone. http://docs.openstack.org/developer/

keystone/, Retrieved Nov. 2013.

[57] OpenStack, LLC. OpenStack Identity Service API v2.0 Reference. http://docs.
openstack.org/api/openstack-identity-service/2.0/content/, Retrieved
Nov. 2013.

56

https://github.com/namecoin/namecoin
https://ssd.eff.org/foreign/nsl
https://www.eff.org/deeplinks/2013/11/encrypt-web-report-whos-doing-what
https://www.eff.org/deeplinks/2013/11/encrypt-web-report-whos-doing-what
https://www.eff.org/issues/national-security-letters
https://www.eff.org/issues/national-security-letters
https://www.eff.org/sovereign-keys
https://www.eff.org/sovereign-keys
https://www.eff.org/observatory
https://www.eff.org/observatory
http://www.reddit.com/r/Bitcoin/comments/201g66/onename_the_decentralized_identity_system_for/
http://www.reddit.com/r/Bitcoin/comments/201g66/onename_the_decentralized_identity_system_for/
http://software.intel.com/cloudservicesplatform/service/intel-identity-services
http://software.intel.com/cloudservicesplatform/service/intel-identity-services
http://www.imc.org/smime-pgpmime.html
http://www.imc.org/smime-pgpmime.html
http://janrain.com/products/identity-service/
http://support.microsoft.com/kb/293817
http://support.microsoft.com/kb/293818/en-us
http://support.microsoft.com/kb/293818/en-us
http://openid.net/
http://docs.openstack.org/developer/keystone/
http://docs.openstack.org/developer/keystone/
http://docs.openstack.org/api/openstack-identity-service/2.0/content/
http://docs.openstack.org/api/openstack-identity-service/2.0/content/

[58] Thoughtcrime Labs Production. Convergence. http://convergence.io, Re-
trieved Aug. 2013.

[59] Tigase, Inc. Tigase XMPP/Jabber Server. http://www.tigase.org, Retrieved
Apr. 2014.

[60] Reuters. At Sina Weibo’s Censorship Hub, ’Little Brothers’ Cleanse Online
Chatter. http://www.voanews.com/content/reu-sina-weibo-censorship-

online-chatter/1748103.html, Retrieved Nov. 2013.

[61] Mark D. Ryan. Enhanced certificate transparency and end-to-end encrypted
email. In Proc. NDSS, Feb. 2014.

[62] P. Saint-Andre Ed. RFC 3920 Extensible Messaging and Presence Protocol
(XMPP): Core, Oct. 2004.

[63] S. Shin and K. Kobara. RFC 6628 Efficient Augmented Password-Only Authen-
tication and Key Exchange for IKEv2, Jun. 2012.

[64] Ryan Stedman, Kayon Yoshida, and Ian Goldberg. A user study of off-the-record
messaging. In Proc. SOUPS, Jul. 2008.

[65] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing me onto your accounts
through facebook and google: A traffic-guided security study of commercially
deployed single-sign-on web services. In Proc. SP, May 2012.

[66] Dan Wendlandt, David G. Andersen, and Adrian Perrig. Perspectives: improving
SSH-style host authentication with multi-path probing. In Proc. ATC, Jun. 2008.

[67] Alma Whitten and J. D. Tygar. Why Johnny can’t encrypt: a usability evalua-
tion of PGP 5.0. In Proc. USENIX Security, Aug. 1999.

[68] Philip R. Zimmermann. The official PGP user’s guide. MIT Press, Cambridge,
MA, USA, 1995.

57

http://convergence.io
http://www.tigase.org
http://www.voanews.com/content/reu-sina-weibo-censorship-online-chatter/1748103.html
http://www.voanews.com/content/reu-sina-weibo-censorship-online-chatter/1748103.html

	Abstract
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	1.1 A Different Approach to Identity: Continuity
	1.2 Continuity vs. Correctness

	2 Related Work
	2.1 Certificate Transparency
	2.2 Keybase
	2.3 OneName
	2.4 Certificate Validation Systems
	2.5 Identity Services and Authentication Systems
	2.6 Alternative Public-Key Infrastructures
	2.7 Untrusted Cloud Services

	3 CONIKS Overview
	3.1 Threat Model
	3.1.1 Identity Provider
	3.1.2 Clients
	3.1.3 Third-party entities

	3.2 CONIKS Properties
	3.2.1 Whistleblowing

	3.3 Enabling Continuity Checks
	3.4 Applications
	3.4.1 Secure Webmail
	3.4.2 Secure Communications
	3.4.3 Secure Credentials
	3.4.4 Adopting CONIKS in practice

	4 System Design
	4.1 Making Bindings Verifiable
	4.1.1 Committing to a Merkle Search Tree
	4.1.2 Comparable Commitments
	4.1.3 Associating Commitments over Time

	4.2 Continuity Checks
	4.2.1 Checking for Commitment Non-Equivocation
	4.2.2 Checking for Binding Validity
	4.2.3 Performing Checks after Missing Epochs

	4.3 Whistleblowing

	5 Security Analysis
	5.1 Detecting Equivocation
	5.2 Ensuring Validity
	5.3 Limiting the Effects of Denied Service

	6 Discussion
	6.1 Scaling CONIKS
	6.1.1 Computing and Transmitting Commitments
	6.1.2 Commitment Verification
	6.1.3 Distributed Operation by Identity Providers.

	6.2 Caching Key Information
	6.3 Key Loss and Account Protection
	6.4 Protocol Extensions
	6.4.1 Concealing the Number of Users
	6.4.2 Returning Updated Bindings between Epochs

	7 Prototype Implementation
	7.1 Background: XMPP, OTR and Tigase
	7.1.1 XMPP
	7.1.2 Off-the-Record Messaging
	7.1.3 Tigase XMPP/Jabber Server

	7.2 ConiksChat Implementation Details
	7.2.1 ConiksChat Service
	7.2.2 ConiksChat Client
	7.2.3 CONIKS Protocol Buffers
	7.2.4 Preliminary Evaluation and Discussion

	8 Conclusion
	Bibliography

