Using FPGAs to create a complete computer system for the classroom

Marcela Melara (WS '12) Advisor: Marc Corliss Hobart and William Smith Colleges, Geneva, NY Summer 2010

Fig. 3 The complete computer system

ISA 🕺	Mz			
	M			
	Туре	Operation	Format	Semantics
	ALU	addition	add \$a \$b \$c	Reg[a] = Reg[b] + Reg[c]
		subtraction	sub \$a \$b \$c	Reg[a] = Reg[b] - Reg[c]
		multiplication	mul \$a \$b \$c	Reg[a] = Reg[b] * Reg[c]
		division	div \$a \$b \$c	Reg[a] = Reg[b] / Reg[c]
		shift left logical	sll \$a \$b \$c	Reg[a] = Reg[b] << Reg[c]
		shift right logical	srl \$a \$b \$c	Reg[a] = Reg[b] >> Reg[c]
		bitwise AND	and \$a \$b \$c	Reg[a] = Reg[b] & Reg[c]
		bitwise NOR	nor \$a \$b \$c	$\operatorname{Reg}[a] = (\operatorname{Reg}[b] \operatorname{Reg}[c])$
	Long immediate	load immediate	li \$a limm	Reg[a] = sext(limm)
		load address	la \$a label	Reg[a] = addr(target)
		load upper immediate	lui \$a limm	Reg[a] = limm << 8
		branch equal to 0	beqz \$a target	if (Reg[a] == 0) PC=addr(target)-1
otal			beqz \$a limm	if (Reg[a] == 0) PC=PC+sext(limm)
		branch less than 0	bltz \$a target	if (Reg[a] < 0) PC=addr(target)-1
			bltz \$a limm	if (Reg[a] < 0) PC=PC+sext(limm)
	Short immediate	memory load	lw \$a simm(\$b)	Reg[a] = Mem[Reg[b]+sext(simm)]
	Short inifiediate	memory store	sw \$a simm(\$b)	Mem[Reg[b]+sext(simm)] = Reg[a]
	Jump	jump and link register	jalr \$a \$b	old_pc=PC, PC=Reg[b], Reg[a]=old_pc+1
	System call	system call	syscall	perform system call (type in Reg[1])
	Fig. 6 Base Larc Assembly instructions			

www.alteraforums.com