Using FPGASs to create a complete computer system for the classroom

Marcela Melara (WS '12)
Advisor: Marc Corliss
Hobart and William Smith Colleges, Geneva, NY
summer 2010

¥ FPGAS 3

Definition - FPGA (Field-Programmable Gate Array): Infegrated circuit made o
be configured by the designer

% A complete system 3

Hardware components of the complete computer:

¥ Overview ¥ .

Project goal: create computer system for pedagogical purposes * processor and memory (RAM)

E will be used in CS courses such as CPSC 220 Computer Architecture or * keyboard and monitor

2> used to build reconfigurable digital circuits - undefined function at time of

manufacture —» must be reconfigured (i.e. programmed) before use CPSC 431 Operating Systems * hard disk
FPGAs consist of gri_d of Used FPGAs to implement processor for the computer system # Each of these components has a controller to provide an abstract interface for the
programmable logic elements, VGA video port processor

for monitor

which are “wired together”

when device is configured Why use FPGAs? 4

g flexibly programmable soft-processors, faster than sofftware simulation,
cheaper 4

Definition - Confroller: A digital circuit which interfaces two separate pieces of
hardware and controls the flow of dafa between them

PS/2 port

Configuration design specified i 3 LI
for keyboard

by a hardware description 19‘999‘!9 All the components are connected by a high-speed bus

) | | sbﬁ e ‘i
language (e.g. Verilog) = 99 Em 1199% I S E: _ _ # Definition - Bus: A system of parallel wires that transfer data beTween computer
Common applicaﬁonS' MGIOr tasks of prOIGCt: Componenfs
digital si | _ 8/ cra Cyclone I 1) design and program basic version of Larc processor with RAM
» digital signal processin 8 rrcn
9 gnalp 9 WP 2) incorporate support for monitor and keyboard for interaction with computer n FPGA
- I I
car multimedia systems g 3) add support for an operating system (simple OS compatible with Larc) cPU
> medical imaging | 4) incorporate hard disk to support file system - —
o 512KB SRAM . . L emory
» speech recognition as memory (RAM) 5) add support for multi-tasking via timer Controller
» many, many more... —Tt—T—
Y Y Possible future projects: Keyboard | |Monitor | |Memory | |Disk
Our application: , , | Controller| | Controller| |Controller| [Controller
M— . 1) confinue enhancing processor's performance
ed and Green s, toggle an . . o . . L . . .
processor core that can be pushbutton switches for testing 2) create more application-specific processors for use in other scientific fields Keyboard | |Monitor | [Memory | |Hard Disk

flexibly modified according to
gradual improvements

Fig. 1 Altera DET Board Overview; components used in the
project are marked

image source: www.woorimtni.co.kr/terasic/ Fig. 3 The complete computer system

Fig. 2 Broad overview of the Larc processor

3 The Larc ISA 3

Definition - ISA (Instruction Set Architecture): Specification Ty
of set of insfructions a processor can execute, and
memory layout

3 The Larc Processor 3

Semantics

Reg[a] = Reg[b] + Reg[c]
Reg[a] = Reg[b] - Reg[c]
Reg[a] = Reg[b] * Reg[c]
Reg[a] = Reg[b] / Reg[c]

Ope ration

addition

Format

add $a %b 3¢
sub Sa b Sc
mul %a b 5c
div $a Sb $c

Processor Schemaitic:

¢ Major components of the processor:

subtraction

multiplication

+ Registers (e.g. PC, MAR, opcode etc.)

division

regDatal

mernm write

Memory and /O Controller

Control Unit
register file

16 Registers: 13 general-purpose, 3 specialized - form the

add . ~ _ < Su bse‘l' Of MIPS shift left logical sll $a 3b 3¢ Reg[a] = Reg[b] << Rep[c]
* =mm - ALU shift nght logical srl $a Sb %c Reg[a] = Reglb] > Reg[c]
— +I—l - S —— . - Processor Width]6 b“s bitwise AND and $a $b $c Reg[a] = Reg[b] & Reg|c]
- — — - el mg ----- e[3] — .j_opc:.dep_]_n] resuk[15.01 = Reglsi‘er Flle hitw ise NOR nor $a 8b %S¢ Regla] = (Reg[b] | Reglc])
1 r—p— reglDi 3.0 regial1[15..0 : -I : Zz; ::E . .] . . mediate — eolal — sextili
> B R] W e i i M 4 1/0 controll 16 instructions: 8 ALU, 2 branches, 2 memory, 2 immediate T
e - . oad address a Sa labe egla] = addr{tarpet)
B} A I ereregaiD e —— L emory and |/O controller loads, 1 jump, and 1 system call ood upper immediate | i Safimm | Reala] =l << §
g -—-| targReglD - r ok Fﬁ 3 o . _] Long immediate | branch equal to 0 beqz $atarset | if (Reg[a] = 0) PC=addr(target)- 1
o eon D — S Control Unit Memory: 16-bit address, 16-bit data - address space 2'° - t{otal beqz Salimm | if (Regfa] == 0) PC=PCssext(limm)
o 71 bcode . . i — branch less than bltz Sa target if (Reg[a] < 0) PC=addritarget)-1
L > i simm A - ¢ Dqtq ﬂow In the processor Is mqnaged by the memory SIZe]28KB bitz $a limm if (Reg[a] < 0) PC=PC+sext{limm)
—

Short immediate

memory load

Iw %a simmi(Sh)

Regl[a] = Mem[Reg[b]+sext(simmj]

MEMOry siome

sw %a simmi(%h)

Mem[Reg[bl+sextisimm]] = Reg[a]

Jump

jump and link register

jalr %a Sh

old_pe=PC, PC=Reg[b], Reg[al=old_pc+]

System call

system call

syscall

perform system call (type in Reg[1])

Uses memory-mapped 1I/0 for input/output communication

Fig. 6 Base Larc Assembly insfructions

Legend:

Control Unit

—— Blue lines denote data transfer
Purple lines denote control signals

i The System Architecture 3¢

Fig. 4 Larc Processor schematic The System Architecture is the part of the ISA that specifies support for an operating system

Processor Conirol: Definition - Operating System (OS): A soffware program (or a set thereof) which acts as an infermediary between

application programs and computer hardware

Legend:

Yellow circles denote the states of the control Added support for a simple OS to the processor via the implementation of a system call instruction

unit

execute_timer

: execute ALU
reset J
_P—
reset_pc fetch
: write_back
\‘__*_‘__/
decode execute_ Ilmm execute_ |LII execute beqz execute_ bnez execute - jump~., execute syscall execute_sysretn

execute simm

execute_div

Z> User applications communicate with the OS through this instruction

Arrows show direction of control flow OS polls I/O devices through memory-mapped registers

Z> A simple (inefficient) way to communicate with devices (e.g. monitor, keyboard)

¢ The Control Unit in the processor is managed via a Added support for multi-tasking using a timer in the processor

Finite State machine

Z> Multiple processes execute concurrently, timer allows for preemptive switching

¢ Definition - Finite State Machine: Behavioral model
which specifies a finite set of states, a state
fransition function, and state events

..

execute load2

execute load

\execute store execute store2 execute store3 mmotestoreél

References

Hamblen, James O., Tyson S. Hall, and Michael D. Furman. Rapid Prototyping of Digital Systems: SOPC Edition. New York, NY: Springer, 2008. Print
Patterson, David A., and John L. Hennessey. Computer Organization and Design. 3" ed. San Francisco, CA: Elsevier, 2005. Print.
www.altera.com www.alteraforums.com

_—.

S —

—_—

¢ Finite State machines are implemented in hardware
through a combinational and sequential circuit

Fig. 5 Conftrol Finite State Machine

